Tonic's picture
Passed configuration parameters directly to ModernBertConfig constructor
275c5df unverified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, ModernBertConfig
from torch.utils.data import DataLoader
from transformers import DataCollatorWithPadding
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection using ModernBERT.
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Get test dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# MODEL INFERENCE CODE
#--------------------------------------------------------------------------------------------
try:
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model and tokenizer paths
model_name = "Tonic/climate-guard-toxic-agent"
tokenizer_name = "Tonic/climate-guard-toxic-agent"
# Create config
config = ModernBertConfig(
vocab_size=50368,
hidden_size=768,
num_hidden_layers=22,
num_attention_heads=12,
intermediate_size=1152,
max_position_embeddings=8192,
layer_norm_eps=1e-5,
position_embedding_type="absolute",
pad_token_id=50283,
bos_token_id=50281,
eos_token_id=50282,
sep_token_id=50282,
cls_token_id=50281,
hidden_activation="gelu",
classifier_activation="gelu",
classifier_pooling="mean",
num_labels=8,
id2label={str(i): label for i, label in enumerate(LABEL_MAPPING.keys())},
label2id=LABEL_MAPPING,
problem_type="single_label_classification",
architectures=["ModernBertForSequenceClassification"],
model_type="modernbert"
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
# Load model
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
trust_remote_code=True,
ignore_mismatched_sizes=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
# Set model to evaluation mode
model.eval()
# Preprocess function
def preprocess_function(examples):
return tokenizer(
examples["quote"],
padding=False,
truncation=True,
max_length=512,
return_tensors=None
)
# Tokenize dataset
tokenized_test = test_dataset.map(
preprocess_function,
batched=True,
remove_columns=test_dataset.column_names
)
# Set format for pytorch
tokenized_test.set_format("torch")
# Create DataLoader
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
test_loader = DataLoader(
tokenized_test,
batch_size=16,
collate_fn=data_collator,
shuffle=False
)
# Get predictions
predictions = []
with torch.no_grad():
for batch in test_loader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
preds = torch.argmax(outputs.logits, dim=-1)
predictions.extend(preds.cpu().numpy().tolist())
# Clean up GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
print(f"Error during model inference: {str(e)}")
raise
#--------------------------------------------------------------------------------------------
# MODEL INFERENCE ENDS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_dataset["label"], predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results