Tonic's picture
improve model loading
89f8be4 unverified
raw
history blame
5.64 kB
from fastapi import APIRouter
from datetime import datetime
import time
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import DataLoader
from transformers import DataCollatorWithPadding
from huggingface_hub import login
from dotenv import load_dotenv
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
# Load environment variables
load_dotenv()
# Authenticate with Hugging Face
HF_TOKEN = os.getenv('HF_TOKEN')
if HF_TOKEN:
login(token=HF_TOKEN)
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection"
ROUTE = "/text"
MODEL_NAME = "Tonic/climate-guard-toxic-agent"
TOKENIZER_NAME = "answerdotai/ModernBERT-base"
class TextClassifier:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# Initialize model
self.model = BertForSequenceClassification.from_pretrained(
MODEL_NAME,
num_labels=8,
ignore_mismatched_sizes=True
).to(self.device)
# Convert to half precision and eval mode
self.model = self.model.half()
self.model.eval()
print("Model initialized successfully")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
def process_batch(self, batch):
try:
# Move batch to device
input_ids = batch['input_ids'].to(self.device)
attention_mask = batch['attention_mask'].to(self.device)
# Get predictions
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.argmax(outputs.logits, dim=-1)
return predictions.cpu().numpy().tolist()
except Exception as e:
print(f"Error in batch processing: {str(e)}")
return [0] * len(batch['input_ids'])
def __del__(self):
if hasattr(self, 'model'):
del self.model
if torch.cuda.is_available():
torch.cuda.empty_cache()
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""Evaluate text classification for climate disinformation detection."""
username, space_url = get_space_info()
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
try:
# Load dataset
dataset = load_dataset(request.dataset_name)
# Convert labels
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# Initialize model
classifier = TextClassifier()
# Prepare tokenization function
def preprocess_function(examples):
return classifier.tokenizer(
examples["quote"],
truncation=True,
padding=True,
max_length=512
)
# Tokenize dataset
tokenized_test = test_dataset.map(preprocess_function, batched=True)
tokenized_test.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
# Create DataLoader
data_collator = DataCollatorWithPadding(tokenizer=classifier.tokenizer)
test_loader = DataLoader(
tokenized_test,
batch_size=16,
collate_fn=data_collator
)
# Get predictions
all_predictions = []
for batch in test_loader:
batch_preds = classifier.process_batch(batch)
all_predictions.extend(batch_preds)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_dataset["label"], all_predictions)
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
except Exception as e:
print(f"Error in evaluate_text: {str(e)}")
raise Exception(f"Failed to process request: {str(e)}")