Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
import time | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import os | |
from concurrent.futures import ThreadPoolExecutor | |
from typing import List, Dict, Tuple | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from torch.utils.data import DataLoader | |
from transformers import DataCollatorWithPadding | |
from huggingface_hub import login | |
from dotenv import load_dotenv | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
# Load environment variables | |
load_dotenv() | |
# Authenticate with Hugging Face | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
if HF_TOKEN: | |
login(token=HF_TOKEN) | |
router = APIRouter() | |
DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection" | |
ROUTE = "/text" | |
MODEL_NAME = "Tonic/climate-guard-toxic-agent" | |
TOKENIZER_NAME = "answerdotai/ModernBERT-base" | |
class TextClassifier: | |
def __init__(self): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
try: | |
# Initialize tokenizer | |
self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME) | |
# Initialize model | |
self.model = BertForSequenceClassification.from_pretrained( | |
MODEL_NAME, | |
num_labels=8, | |
ignore_mismatched_sizes=True | |
).to(self.device) | |
# Convert to half precision and eval mode | |
self.model = self.model.half() | |
self.model.eval() | |
print("Model initialized successfully") | |
except Exception as e: | |
print(f"Error initializing model: {str(e)}") | |
raise | |
def process_batch(self, batch): | |
try: | |
# Move batch to device | |
input_ids = batch['input_ids'].to(self.device) | |
attention_mask = batch['attention_mask'].to(self.device) | |
# Get predictions | |
with torch.no_grad(): | |
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) | |
predictions = torch.argmax(outputs.logits, dim=-1) | |
return predictions.cpu().numpy().tolist() | |
except Exception as e: | |
print(f"Error in batch processing: {str(e)}") | |
return [0] * len(batch['input_ids']) | |
def __del__(self): | |
if hasattr(self, 'model'): | |
del self.model | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
async def evaluate_text(request: TextEvaluationRequest): | |
"""Evaluate text classification for climate disinformation detection.""" | |
username, space_url = get_space_info() | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
try: | |
# Load dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert labels | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
# Initialize model | |
classifier = TextClassifier() | |
# Prepare tokenization function | |
def preprocess_function(examples): | |
return classifier.tokenizer( | |
examples["quote"], | |
truncation=True, | |
padding=True, | |
max_length=512 | |
) | |
# Tokenize dataset | |
tokenized_test = test_dataset.map(preprocess_function, batched=True) | |
tokenized_test.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) | |
# Create DataLoader | |
data_collator = DataCollatorWithPadding(tokenizer=classifier.tokenizer) | |
test_loader = DataLoader( | |
tokenized_test, | |
batch_size=16, | |
collate_fn=data_collator | |
) | |
# Get predictions | |
all_predictions = [] | |
for batch in test_loader: | |
batch_preds = classifier.process_batch(batch) | |
all_predictions.extend(batch_preds) | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(test_dataset["label"], all_predictions) | |
# Prepare results | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results | |
except Exception as e: | |
print(f"Error in evaluate_text: {str(e)}") | |
raise Exception(f"Failed to process request: {str(e)}") |