Spaces:
Sleeping
Sleeping
File size: 5,638 Bytes
e33fed0 4d6e8c2 ece5856 e33fed0 4d6e8c2 e33fed0 4d6e8c2 acf9798 1c33274 70f5f26 acf9798 4d6e8c2 70f5f26 4d6e8c2 e33fed0 4d6e8c2 e33fed0 4d6e8c2 e33fed0 acf9798 e33fed0 acf9798 e33fed0 acf9798 e33fed0 acf9798 e33fed0 acf9798 e33fed0 acf9798 e33fed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# tasks/text.py
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader
import logging
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent Model"
ROUTE = "/text"
class TextDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len=128):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = str(self.texts[idx])
label = self.labels[idx]
encoding = self.tokenizer(
text,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_tensors="pt"
)
return {
'input_ids': encoding['input_ids'].squeeze(0),
'attention_mask': encoding['attention_mask'].squeeze(0),
'labels': torch.tensor(label, dtype=torch.long)
}
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
"""
try:
logger.info("Starting evaluation")
username, space_url = get_space_info()
# Label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
logger.info("Loading dataset")
# Load dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Get test dataset
test_dataset = dataset["test"]
logger.info("Starting emissions tracking")
# Start tracking emissions
tracker.start()
try:
# Load model and tokenizer
logger.info("Loading model and tokenizer")
model_name = "Tonic/climate-guard-toxic-agent"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
# Prepare dataset
logger.info("Preparing dataset")
test_data = TextDataset(
texts=test_dataset["text"],
labels=test_dataset["label"],
tokenizer=tokenizer
)
test_loader = DataLoader(test_data, batch_size=16)
# Model inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
model = model.to(device)
model.eval()
predictions = []
ground_truth = []
logger.info("Running inference")
with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
_, predicted = torch.max(outputs.logits, 1)
predictions.extend(predicted.cpu().numpy())
ground_truth.extend(labels.cpu().numpy())
# Calculate accuracy
accuracy = accuracy_score(ground_truth, predictions)
logger.info(f"Accuracy: {accuracy}")
# Stop tracking emissions
emissions_data = tracker.stop()
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": float(emissions_data.energy_consumed * 1000),
"emissions_gco2eq": float(emissions_data.emissions * 1000),
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
logger.info("Evaluation completed successfully")
return results
except Exception as e:
logger.error(f"Error during evaluation: {str(e)}")
tracker.stop()
raise e
except Exception as e:
logger.error(f"Error in evaluate_text: {str(e)}")
raise HTTPException(status_code=500, detail=str(e)) |