Spaces:
Sleeping
Sleeping
File size: 4,446 Bytes
4d6e8c2 ece5856 4d6e8c2 acf9798 1c33274 70f5f26 acf9798 4d6e8c2 70f5f26 4d6e8c2 acf9798 4d6e8c2 acf9798 4d6e8c2 acf9798 4d6e8c2 acf9798 76fccaf 4d6e8c2 acf9798 4d6e8c2 acf9798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent Model"
ROUTE = "/text"
class TextDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len=128):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = str(self.texts[idx])
label = self.labels[idx]
encoding = self.tokenizer(
text,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_tensors="pt"
)
return {
'input_ids': encoding['input_ids'].squeeze(0),
'attention_mask': encoding['attention_mask'].squeeze(0),
'labels': torch.tensor(label, dtype=torch.long)
}
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
"""
username, space_url = get_space_info()
# Label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Get test dataset
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
try:
# Load model and tokenizer
model_name = "Tonic/climate-guard-toxic-agent"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Prepare dataset
test_data = TextDataset(
texts=test_dataset["text"],
labels=test_dataset["label"],
tokenizer=tokenizer
)
test_loader = DataLoader(test_data, batch_size=16)
# Model inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
predictions = []
ground_truth = []
with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
_, predicted = torch.max(outputs.logits, 1)
predictions.extend(predicted.cpu().numpy())
ground_truth.extend(labels.cpu().numpy())
# Calculate accuracy
accuracy = accuracy_score(ground_truth, predictions)
# Stop tracking emissions
emissions_data = tracker.stop()
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
except Exception as e:
tracker.stop()
raise e |