File size: 4,446 Bytes
4d6e8c2
 
 
 
ece5856
 
 
4d6e8c2
 
 
 
 
 
acf9798
1c33274
70f5f26
acf9798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
 
 
acf9798
4d6e8c2
 
 
 
 
 
 
 
 
 
 
acf9798
4d6e8c2
acf9798
4d6e8c2
 
acf9798
 
76fccaf
4d6e8c2
 
 
 
acf9798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
acf9798
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Climate Guard Toxic Agent Model"
ROUTE = "/text"

class TextDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, max_len=128):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = str(self.texts[idx])
        label = self.labels[idx]
        
        encoding = self.tokenizer(
            text,
            max_length=self.max_len,
            padding='max_length',
            truncation=True,
            return_tensors="pt"
        )
        
        return {
            'input_ids': encoding['input_ids'].squeeze(0),
            'attention_mask': encoding['attention_mask'].squeeze(0),
            'labels': torch.tensor(label, dtype=torch.long)
        }

@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    """
    username, space_url = get_space_info()

    # Label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load dataset
    dataset = load_dataset(request.dataset_name)
    
    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
    
    # Get test dataset
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    
    try:
        # Load model and tokenizer
        model_name = "Tonic/climate-guard-toxic-agent"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSequenceClassification.from_pretrained(model_name)
        
        # Prepare dataset
        test_data = TextDataset(
            texts=test_dataset["text"],
            labels=test_dataset["label"],
            tokenizer=tokenizer
        )
        
        test_loader = DataLoader(test_data, batch_size=16)
        
        # Model inference
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        model.eval()
        
        predictions = []
        ground_truth = []
        
        with torch.no_grad():
            for batch in test_loader:
                input_ids = batch['input_ids'].to(device)
                attention_mask = batch['attention_mask'].to(device)
                labels = batch['labels'].to(device)
                
                outputs = model(input_ids=input_ids, attention_mask=attention_mask)
                _, predicted = torch.max(outputs.logits, 1)
                
                predictions.extend(predicted.cpu().numpy())
                ground_truth.extend(labels.cpu().numpy())
        
        # Calculate accuracy
        accuracy = accuracy_score(ground_truth, predictions)
        
        # Stop tracking emissions
        emissions_data = tracker.stop()
        
        # Prepare results
        results = {
            "username": username,
            "space_url": space_url,
            "submission_timestamp": datetime.now().isoformat(),
            "model_description": DESCRIPTION,
            "accuracy": float(accuracy),
            "energy_consumed_wh": emissions_data.energy_consumed * 1000,
            "emissions_gco2eq": emissions_data.emissions * 1000,
            "emissions_data": clean_emissions_data(emissions_data),
            "api_route": ROUTE,
            "dataset_config": {
                "dataset_name": request.dataset_name,
                "test_size": request.test_size,
                "test_seed": request.test_seed
            }
        }
        
        return results
        
    except Exception as e:
        tracker.stop()
        raise e