StableMed_Chat / app.py
Tonic's picture
Update app.py
7339879
raw
history blame
2.07 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for anyother model on 🤗HuggingFace."
examples = [["How are you?"]]
# Set the padding token to be used and initialize the model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
tokenizer.padding_side = 'left'
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together."
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
tokenizer.padding_side = 'left'
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
class ChatBot:
def __init__(self):
self.history = []
def predict(self, input):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
bot_input_ids = torch.cat([torch.tensor(self.history), new_user_input_ids], dim=-1) if self.history else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id)
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist())
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
bot = ChatBot()
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs="text",
outputs="text",
theme="ParityError/Anime",
)
iface.launch()