""" SmolLM3 Training Configuration for OpenHermes-FR Dataset Optimized for French instruction tuning using legmlai/openhermes-fr """ import os from dataclasses import dataclass from typing import Optional from config.train_smollm3 import SmolLM3Config @dataclass class SmolLM3ConfigOpenHermesFR(SmolLM3Config): """Configuration for SmolLM3 fine-tuning on OpenHermes-FR dataset""" # Model configuration model_name: str = "HuggingFaceTB/SmolLM3-3B" max_seq_length: int = 4096 use_flash_attention: bool = True use_gradient_checkpointing: bool = True # Training configuration - optimized for French instruction tuning batch_size: int = 2 # Reduced for French text (longer sequences) gradient_accumulation_steps: int = 8 # Increased to maintain effective batch size learning_rate: float = 1e-5 # Slightly lower for instruction tuning weight_decay: float = 0.01 warmup_steps: int = 500 # More warmup for instruction tuning max_iters: int = 2000 # More iterations for large dataset eval_interval: int = 200 log_interval: int = 10 save_interval: int = 500 # Optimizer configuration optimizer: str = "adamw_torch" beta1: float = 0.9 beta2: float = 0.95 eps: float = 1e-8 # Scheduler configuration scheduler: str = "cosine" min_lr: float = 1e-6 # Mixed precision fp16: bool = True bf16: bool = False # DDP configuration ddp_backend: str = "nccl" ddp_find_unused_parameters: bool = False # Logging and saving save_steps: int = 500 eval_steps: int = 200 logging_steps: int = 10 save_total_limit: Optional[int] = 3 # Evaluation eval_strategy: str = "steps" metric_for_best_model: str = "eval_loss" greater_is_better: bool = False load_best_model_at_end: bool = True # OpenHermes-FR Dataset configuration dataset_name: str = "legmlai/openhermes-fr" dataset_split: str = "train" input_field: str = "prompt" target_field: str = "accepted_completion" filter_bad_entries: bool = True bad_entry_field: str = "bad_entry" # Data configuration (not used for HF datasets but kept for compatibility) data_dir: str = None train_file: str = None validation_file: Optional[str] = None test_file: Optional[str] = None # Chat template configuration use_chat_template: bool = True chat_template_kwargs: dict = None # Trackio monitoring configuration enable_tracking: bool = True trackio_url: Optional[str] = None trackio_token: Optional[str] = None log_artifacts: bool = True log_metrics: bool = True log_config: bool = True experiment_name: Optional[str] = None # HF Datasets configuration hf_token: Optional[str] = None dataset_repo: Optional[str] = None def __post_init__(self): if self.chat_template_kwargs is None: self.chat_template_kwargs = { "add_generation_prompt": True, "no_think_system_message": True # Set to True to add /no_think tag } # Validate configuration if self.fp16 and self.bf16: raise ValueError("Cannot use both fp16 and bf16") if self.max_seq_length > 131072: # 128k limit raise ValueError("max_seq_length cannot exceed 131072") # Set default experiment name if not provided if self.experiment_name is None: self.experiment_name = "smollm3_openhermes_fr" def get_config(config_path: str) -> SmolLM3ConfigOpenHermesFR: """Load configuration from file or return default""" if os.path.exists(config_path): # Load from file if it exists import importlib.util spec = importlib.util.spec_from_file_location("config_module", config_path) config_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(config_module) if hasattr(config_module, 'config'): return config_module.config else: # Try to find a config class for attr_name in dir(config_module): attr = getattr(config_module, attr_name) if isinstance(attr, SmolLM3ConfigOpenHermesFR): return attr # Return default configuration return SmolLM3ConfigOpenHermesFR() # Default configuration instance config = SmolLM3ConfigOpenHermesFR()