Spaces:
Paused
Paused
add demo
Browse files- app.py +167 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from safetensors import safe_open
|
| 5 |
+
import json
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import numpy as np
|
| 9 |
+
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageChunk
|
| 10 |
+
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 11 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 12 |
+
|
| 13 |
+
# Load model parameters and tokenizer configuration
|
| 14 |
+
with open('PARAMS.json', 'r') as f:
|
| 15 |
+
params = json.load(f)
|
| 16 |
+
|
| 17 |
+
with open('TEKKEN.json', 'r') as f:
|
| 18 |
+
tokenizer_config = json.load(f)
|
| 19 |
+
|
| 20 |
+
class GELU(nn.Module):
|
| 21 |
+
def __init__(self, dim_in, dim_out, approximate='none', bias=True):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.linear = nn.Linear(dim_in, dim_out, bias=bias)
|
| 24 |
+
self.approximate = approximate
|
| 25 |
+
|
| 26 |
+
def forward(self, x):
|
| 27 |
+
if self.approximate == 'tanh':
|
| 28 |
+
return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
| 29 |
+
else:
|
| 30 |
+
return F.gelu(self.linear(x))
|
| 31 |
+
|
| 32 |
+
class Rope2D(nn.Module):
|
| 33 |
+
def __init__(self, dim, max_position_embeddings=1024, base=10000):
|
| 34 |
+
super().__init__()
|
| 35 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 36 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 37 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 38 |
+
t = torch.arange(self.max_seq_len_cached, dtype=self.inv_freq.dtype)
|
| 39 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 40 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 41 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
| 42 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
| 43 |
+
|
| 44 |
+
def forward(self, x, seq_len=None):
|
| 45 |
+
if seq_len > self.max_seq_len_cached:
|
| 46 |
+
self.max_seq_len_cached = seq_len
|
| 47 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
| 48 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 49 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 50 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
| 51 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
| 52 |
+
return (
|
| 53 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 54 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
class VisionEncoder(nn.Module):
|
| 58 |
+
def __init__(self, config):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.config = config
|
| 61 |
+
self.embed = nn.Conv2d(config['num_channels'], config['hidden_size'], kernel_size=config['patch_size'], stride=config['patch_size'])
|
| 62 |
+
self.rope = Rope2D(config['hidden_size'] // config['num_attention_heads'], base=config['rope_theta'])
|
| 63 |
+
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config['hidden_size'], nhead=config['num_attention_heads'], dim_feedforward=config['intermediate_size']) for _ in range(config['num_hidden_layers'])])
|
| 64 |
+
self.norm = nn.LayerNorm(config['hidden_size'])
|
| 65 |
+
self.gelu = GELU(config['hidden_size'], config['hidden_size'])
|
| 66 |
+
|
| 67 |
+
def forward(self, pixel_values):
|
| 68 |
+
x = self.embed(pixel_values)
|
| 69 |
+
b, c, h, w = x.shape
|
| 70 |
+
x = x.flatten(2).transpose(1, 2)
|
| 71 |
+
cos, sin = self.rope(x, seq_len=h*w)
|
| 72 |
+
for layer in self.layers:
|
| 73 |
+
x = layer(x)
|
| 74 |
+
x = self.norm(x)
|
| 75 |
+
x = self.gelu(x)
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
class PixtralModel(nn.Module):
|
| 79 |
+
def __init__(self, params):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.vision_encoder = VisionEncoder(params['vision_encoder'])
|
| 82 |
+
# Add text generation components here
|
| 83 |
+
|
| 84 |
+
def forward(self, image):
|
| 85 |
+
vision_output = self.vision_encoder(image)
|
| 86 |
+
# Add text generation logic here
|
| 87 |
+
return vision_output
|
| 88 |
+
|
| 89 |
+
# Initialize the model
|
| 90 |
+
model = PixtralModel(params)
|
| 91 |
+
|
| 92 |
+
# Load the model weights
|
| 93 |
+
with safe_open('consolidated.safetensors', framework="pt", device="cpu") as f:
|
| 94 |
+
for name, param in model.named_parameters():
|
| 95 |
+
if name in f.keys():
|
| 96 |
+
param.data = f.get_tensor(name)
|
| 97 |
+
|
| 98 |
+
model.eval()
|
| 99 |
+
|
| 100 |
+
# Initialize the tokenizer
|
| 101 |
+
tokenizer = MistralTokenizer.from_model("pixtral")
|
| 102 |
+
|
| 103 |
+
def process_image_and_text(image, prompt):
|
| 104 |
+
# Prepare the image
|
| 105 |
+
image = image.convert('RGB')
|
| 106 |
+
image = image.resize((params['vision_encoder']['image_size'], params['vision_encoder']['image_size']))
|
| 107 |
+
image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 108 |
+
|
| 109 |
+
# Tokenize the input
|
| 110 |
+
tokenized = tokenizer.encode_chat_completion(
|
| 111 |
+
ChatCompletionRequest(
|
| 112 |
+
messages=[
|
| 113 |
+
UserMessage(
|
| 114 |
+
content=[
|
| 115 |
+
TextChunk(text=prompt),
|
| 116 |
+
ImageChunk(image=image),
|
| 117 |
+
]
|
| 118 |
+
)
|
| 119 |
+
],
|
| 120 |
+
model="pixtral",
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
|
| 124 |
+
|
| 125 |
+
# Process the image and generate text
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
vision_output = model(image_tensor)
|
| 128 |
+
# Add text generation logic here
|
| 129 |
+
generated_text = f"Generated text based on the image and prompt: {prompt}"
|
| 130 |
+
|
| 131 |
+
return generated_text, len(tokens), len(images)
|
| 132 |
+
|
| 133 |
+
# Gradio interface
|
| 134 |
+
with gr.Blocks() as demo:
|
| 135 |
+
gr.Markdown("# Pixtral Image-to-Text Model Demo")
|
| 136 |
+
gr.Markdown("Upload an image and provide a prompt to generate text based on it.")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Column(scale=1):
|
| 140 |
+
input_image = gr.Image(type="pil")
|
| 141 |
+
input_prompt = gr.Textbox(label="Prompt")
|
| 142 |
+
submit_btn = gr.Button("Generate Text")
|
| 143 |
+
|
| 144 |
+
with gr.Column(scale=1):
|
| 145 |
+
output_text = gr.Textbox(label="Generated Text")
|
| 146 |
+
token_count = gr.Number(label="Number of Tokens")
|
| 147 |
+
image_count = gr.Number(label="Number of Images")
|
| 148 |
+
|
| 149 |
+
submit_btn.click(
|
| 150 |
+
fn=process_image_and_text,
|
| 151 |
+
inputs=[input_image, input_prompt],
|
| 152 |
+
outputs=[output_text, token_count, image_count]
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
gr.Markdown("## How it works")
|
| 156 |
+
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
|
| 157 |
+
gr.Markdown("2. The encoder uses GELU activation in its layers.")
|
| 158 |
+
gr.Markdown("3. The encoded image and the prompt are used to generate descriptive text.")
|
| 159 |
+
|
| 160 |
+
gr.Markdown("## Model Details")
|
| 161 |
+
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
|
| 162 |
+
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
|
| 163 |
+
gr.Markdown(f"- Number of Attention Heads: {params['vision_encoder']['num_attention_heads']}")
|
| 164 |
+
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
|
| 165 |
+
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
|
| 166 |
+
|
| 167 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.9.0
|
| 2 |
+
safetensors>=0.3.1
|
| 3 |
+
gradio>=3.32.0
|
| 4 |
+
Pillow>=9.0.0
|
| 5 |
+
numpy>=1.21.0
|
| 6 |
+
mistral_common
|