Spaces:
Build error
Build error
File size: 5,965 Bytes
8f6035e d74ddfc b3758b8 163f1eb 8f6035e a136991 3400476 7879d7a ad0d74d 5171d49 ad0d74d 6723b69 e71614a 8f6035e e71614a 8f6035e 8421fc1 200153d aeca4a5 200153d 8f6035e 140d9f4 8f6035e 5171d49 aeca4a5 cbe2df8 8f6035e 5171d49 8f6035e 5171d49 8f6035e cbe2df8 b0f340c 8f6035e e71614a aeca4a5 3400476 8f6035e 3400476 aeca4a5 8f6035e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import gradio as gr
import os
title = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). e5mistral has a larger context window, a different prompting/return mechanism and generally better results than other embedding models.
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
@spaces.GPU
def compute_embeddings(selected_task, input_text, system_prompt):
max_length = 2042
task_description = tasks[selected_task]
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
return embeddings_list
def app_interface():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
input_text_box = gr.Textbox(label="📖Input Text")
system_prompt_box = gr.Textbox(label="🤖System Prompt (Optional)")
compute_button = gr.Button("Try🐣🛌🏻e5")
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻")
with gr.Row():
with gr.Column():
system_prompt_box
input_text_box
with gr.Column():
compute_button
output_display
compute_button.click(
fn=compute_embeddings,
inputs=[task_dropdown, input_text_box],
outputs=output_display
)
return demo
# Run the Gradio app
app_interface().launch() |