File size: 15,464 Bytes
8f6035e
 
 
 
385c295
 
d74ddfc
b3758b8
163f1eb
8f6035e
 
 
cf7c00e
8f6035e
edb37fd
3400476
964b92e
ad0d74d
 
5171d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385c295
 
 
 
 
 
ad0d74d
6723b69
e71614a
8f6035e
 
 
 
 
 
 
 
ace4204
cf7c00e
 
e71614a
cf7c00e
 
 
7b2544a
 
 
 
 
385c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace4204
 
 
 
 
 
385c295
ace4204
cf7c00e
fcbecda
 
 
ace4204
fcbecda
ace4204
 
 
385c295
ace4204
 
385c295
 
 
 
 
 
 
 
 
ace4204
 
 
 
 
 
 
fcbecda
 
 
 
cf7c00e
ace4204
 
 
 
 
 
 
fcbecda
 
 
cf7c00e
ace4204
 
cf7c00e
426a66e
385c295
4cd22b7
 
fcbecda
ace4204
 
 
 
385c295
ace4204
200153d
7b2544a
 
 
 
 
 
 
 
 
 
 
 
385c295
7b2544a
 
 
 
 
 
 
 
 
 
 
 
 
385c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2544a
8f6035e
7b2544a
 
8f6035e
 
 
cf7c00e
 
 
 
 
 
 
 
ace4204
cf7c00e
 
 
 
 
 
 
 
 
 
36cbf30
cf7c00e
ace4204
 
cf7c00e
 
7b2544a
 
 
29595e5
7b2544a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5171d49
385c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f6035e
 
b0f340c
8f6035e
 
 
e71614a
8f6035e
3400476
54f1ed7
 
b2157fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import gradio as gr
import os

title = """
# 👋🏻Welcome to 🙋🏻‍♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """
description = """
You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). 🐣e5-mistral🛌🏻 has a larger context🪟window, a different prompting/return🛠️mechanism and generally better results than other embedding models. use it via API to create embeddings or try out the sentence similarity to see how various optimization parameters affect performance.
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻  [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tasks = {
        'ArguAna': 'Given a claim, find documents that refute the claim',
        'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
        'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
        'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
        'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
        'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
        'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
        'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
        'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
        'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
        'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
        'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
        'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
        'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
}


# Global queue for embedding requests
embedding_request_queue = queue.Queue()
embedding_response_queue = queue.Queue()


tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)

def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]

def clear_cuda_cache():
    torch.cuda.empty_cache()

def free_memory(*args):
    for arg in args:
        del arg

def load_corpus_from_json(file_path):
    with open(file_path, 'r') as file:
        data = json.load(file)
    return data


def embedding_worker():
    while True:
        # Wait for an item in the queue
        item = embedding_request_queue.get()
        if item is None:
            break
        selected_task, input_text = item
        embeddings = compute_embeddings(selected_task, input_text)
        formatted_response = format_response(embeddings)

        embedding_response_queue.put(formatted_response)
        embedding_request_queue.task_done()
        clear_cuda_cache()

threading.Thread(target=embedding_worker, daemon=True).start()

def compute_embeddings(selected_task, input_text):
    try:
        task_description = tasks[selected_task]
    except KeyError:
        print(f"Selected task not found: {selected_task}")
        return f"Error: Task '{selected_task}' not found. Please select a valid task."
    max_length = 2048
    processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
    
    batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
    batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
    batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
    batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
    outputs = model(**batch_dict)
    embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
    embeddings = F.normalize(embeddings, p=2, dim=1)
    embeddings_list = embeddings.detach().cpu().numpy().tolist()
    clear_cuda_cache()
    return embeddings_list

def decode_embedding(embedding_str):
    try:
        embedding = [float(num) for num in embedding_str.split(',')]
        embedding_tensor = torch.tensor(embedding, dtype=torch.float16, device=device)
        decoded_embedding = tokenizer.decode(embedding_tensor[0], skip_special_tokens=True)
        return decoded_embedding.cpu().numpy().tolist()
    except Exception as e:
        return f"Error in decoding: {str(e)}"

def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
    try:
        task_description = tasks[selected_task]
    except KeyError:
        print(f"Selected task not found: {selected_task}")
        return f"Error: Task '{selected_task}' not found. Please select a valid task."
    # Compute embeddings for each sentence
    embeddings1 = compute_embeddings(selected_task, sentence1)
    embeddings2 = compute_embeddings(selected_task, sentence2)
    embeddings3 = compute_embeddings(selected_task, extra_sentence1)
    embeddings4 = compute_embeddings(selected_task, extra_sentence2)
    
    # Convert embeddings to tensors
    embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
    embeddings_tensor2 = torch.tensor(embeddings2).to(device).half()
    embeddings_tensor3 = torch.tensor(embeddings3).to(device).half()
    embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
  
    # Compute cosine similarity
    similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
    similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
    similarity3 = compute_cosine_similarity(embeddings1, embeddings4)

    # Free memory
    free_memory(embeddings1, embeddings2, embeddings3, embeddings4)

    similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
    clear_cuda_cache()
    return similarity_scores
    
def compute_cosine_similarity(emb1, emb2):
    tensor1 = torch.tensor(emb1).to(device).half()
    tensor2 = torch.tensor(emb2).to(device).half()
    similarity = F.cosine_similarity(tensor1, tensor2).item()
    free_memory(tensor1, tensor2)
    clear_cuda_cache()
    return similarity


def compute_embeddings_batch(input_texts):
    max_length = 2042
    processed_texts = [f'Instruct: {task_description}\nQuery: {text}' for text in input_texts]
    
    batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
    batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
    batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
    batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
    outputs = model(**batch_dict)
    embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
    embeddings = F.normalize(embeddings, p=2, dim=1)
    clear_cuda_cache()
    return embeddings.detach().cpu().numpy()

def semantic_search(query_embedding, corpus_embeddings, top_k=5):
    scores = np.dot(corpus_embeddings, query_embedding.T).flatten()
    top_k_indices = np.argsort(scores)[::-1][:top_k]
    return top_k_indices, scores[top_k_indices]

def search_similar_sentences(input_question, corpus_sentences, corpus_embeddings):
    question_embedding = compute_embeddings_batch([input_question])[0]
    top_k_indices, top_k_scores = semantic_search(question_embedding, corpus_embeddings)
    results = [(corpus_sentences[i], top_k_scores[i]) for i in top_k_indices]
    return results

# openai response object formatting
def format_response(embeddings):
    return {
        "data": [
            {
                "embedding": embeddings,
                "index": 0,
                "object": "embedding"
            }
        ],
        "model": "e5-mistral",
        "object": "list",
        "usage": {
            "prompt_tokens": 17,
            "total_tokens": 17
        }
    }

def generate_and_format_embeddings(selected_task, input_text):
    embedding_request_queue.put((selected_task, input_text))
    response = embedding_response_queue.get()
    embedding_response_queue.task_done()
    clear_cuda_cache()
    return response


def app_interface():
    corpus_sentences = []
    corpus_embeddings = []
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        with gr.Row():
            task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])

        with gr.Tab("Embedding Generation"):
            input_text_box = gr.Textbox(label="📖Input Text")
            compute_button = gr.Button("Try🐣🛌🏻e5")
            output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
            compute_button.click(
                fn=compute_embeddings,
                inputs=[task_dropdown, input_text_box],
                outputs=output_display
            )

        with gr.Tab("Sentence Similarity"):
            sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
            sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
            extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
            extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
            similarity_button = gr.Button("Compute Similarity")
            similarity_output = gr.Textbox(label="🐣e5-mistral🛌🏻 Similarity Scores")
            similarity_button.click(
                fn=compute_similarity,
                inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
                outputs=similarity_output
            )
        with gr.Tab("Load Corpus"):
            json_uploader = gr.File(label="Upload JSON File")
            load_corpus_button = gr.Button("Load Corpus")
            corpus_status = gr.Textbox(label="Corpus Status", value="Corpus not loaded")

            def load_corpus(file_info):
                if file_info is None:
                    return "No file uploaded. Please upload a JSON file."
                try:
                    global corpus_sentences, corpus_embeddings
                    corpus_sentences = load_corpus_from_json(file_info['name'])
                    corpus_embeddings = compute_embeddings_batch(corpus_sentences)
                    return "Corpus loaded successfully with {} sentences.".format(len(corpus_sentences))
                except Exception as e:
                    return "Error loading corpus: {}".format(e)

            load_corpus_button.click(
                fn=load_corpus,
                inputs=json_uploader,
                outputs=corpus_status
            )

        with gr.Tab("Semantic Search"):
            input_question_box = gr.Textbox(label="Enter your question")
            search_button = gr.Button("Search")
            search_results_output = gr.Textbox(label="Search Results")

            def perform_search(input_question):
                if not corpus_sentences or not corpus_embeddings:
                    return "Corpus is not loaded. Please load a corpus first."
                return search_similar_sentences(input_question, corpus_sentences, corpus_embeddings)

            search_button.click(
                fn=perform_search,
                inputs=input_question_box,
                outputs=search_results_output
            )

        with gr.Tab("Connector-like Embeddings"):
            with gr.Row():
                input_text_box_connector = gr.Textbox(label="Input Text", placeholder="Enter text or array of texts")
                model_dropdown_connector = gr.Dropdown(label="Model", choices=["ArguAna", "ClimateFEVER", "DBPedia", "FEVER", "FiQA2018", "HotpotQA", "MSMARCO", "NFCorpus", "NQ", "QuoraRetrieval", "SCIDOCS", "SciFact", "Touche2020", "TRECCOVID"], value="text-embedding-ada-002")
                encoding_format_connector = gr.Radio(label="Encoding Format", choices=["float", "base64"], value="float")
                user_connector = gr.Textbox(label="User", placeholder="Enter user identifier (optional)")
                submit_button_connector = gr.Button("Generate Embeddings")
            output_display_connector = gr.JSON(label="Embeddings Output")
            submit_button_connector.click(
                fn=generate_and_format_embeddings,
                inputs=[model_dropdown_connector, input_text_box_connector],
                outputs=output_display_connector
            )

#       with gr.Tab("Decode Embedding"):
#           embedding_input = gr.Textbox(label="Enter Embedding (comma-separated floats)")
#           decode_button = gr.Button("Decode")
#           decoded_output = gr.Textbox(label="Decoded Embedding")
#    
#           decode_button.click(
#               fn=decode_embedding,
#               inputs=embedding_input,
#               outputs=decoded_output
#           )

        with gr.Row():
            with gr.Column():
                input_text_box
            with gr.Column():
                compute_button
                output_display

    return demo


app_interface().queue()
app_interface().launch(share=True)