MultiMedTulu / app.py
Tonic's picture
Update app.py
7afe812
raw
history blame
2.04 kB
import gradio as gr
import requests
import json
# Function to interact with Vectara API
def query_vectara(question, chat_history):
api_endpoint = "https://api.vectara.io/v1/query"
customer_id = "<YOUR-CUSTOMER-ID>"
corpus_id = "<YOUR-CORPUS-ID>"
api_key = "<YOUR-API-KEY>"
# Get the user's message from the chat history
user_message = chat_history[-1][0]
query_body = {
"query": [
{
"query": user_message, # Use the user's message as the query
"start": 0,
"numResults": 10,
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"lexicalInterpolationConfig": {"lambda": 0.025}
}
],
"contextConfig": {
"sentencesBefore": 3,
"sentencesAfter": 3,
"startTag": "%START_TAG%",
"endTag": "%END_TAG%"
},
"summary": [
{
"responseLang": "eng",
"maxSummarizedResults": 7,
"summarizerPromptName": "vectara-summarizer-ext-v1.3.0"
}
]
}
]
}
post_headers = {
"Content-type": "application/json",
"Accept": "application/json",
"customer-id": customer_id,
"x-api-key": api_key
}
response = requests.post(api_endpoint, json=query_body, headers=post_headers)
if response.status_code == 200:
return response.json()
else:
return {"error": "Failed to query Vectara API"}
# Create a Gradio ChatInterface
iface = gr.ChatInterface(
fn=query_vectara,
examples=["Hello", "What is the weather today?", "Tell me a joke"],
title="Vectara Chatbot",
description="Ask me anything using the Vectara API!",
)
# Run the Gradio interface
iface.launch()