Tonic commited on
Commit
f049afb
Β·
unverified Β·
1 Parent(s): 82e1cc2

adds examples

Browse files
Files changed (1) hide show
  1. app.py +24 -3
app.py CHANGED
@@ -93,7 +93,23 @@ examples = [
93
  [unimath1, additional_info_prompt, 2500],
94
  [unimath2, additional_info_prompt, 2500],
95
  [unimath3, additional_info_prompt, 2500],
96
- [unimath4, additional_info_prompt, 2500]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ]
98
 
99
  model_name = "AI-MO/Kimina-Prover-Distill-8B"
@@ -176,9 +192,10 @@ def main():
176
  with gr.Column:
177
  gr.Markdown(description)
178
  with gr.Column:
179
- gr.Markdown(joinus)
180
  with gr.Row():
181
  with gr.Column():
 
182
  user_input = gr.Textbox(label="Your message or formal statement", lines=4)
183
  informal = gr.Textbox(value=additional_info_prompt, label="Optional informal prefix")
184
  max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="Max Tokens")
@@ -189,8 +206,12 @@ def main():
189
  json_out = gr.JSON(label="Full Output")
190
  code_out = gr.Code(label="Extracted Lean4 Code", language="python")
191
  state = gr.State([])
192
- # On submit, call chat_handler
193
  submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state])
 
 
 
 
 
194
  gr.Markdown(citation)
195
  demo.launch()
196
 
 
93
  [unimath1, additional_info_prompt, 2500],
94
  [unimath2, additional_info_prompt, 2500],
95
  [unimath3, additional_info_prompt, 2500],
96
+ [unimath4, additional_info_prompt, 2500],
97
+ # New examples
98
+ [
99
+ '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Let $a_1, a_2,\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/\ntheorem imo_1969_p2 (m n : \\R) (k : \\N) (a : \\N \\rightarrow \\R) (y : \\R \\rightarrow \\R) (hβ‚€ : 0 < k)\n(h₁ : \\forall x, y x = \\sum i in Finset.range k, Real.cos (a i + x) / 2 ^ i) (hβ‚‚ : y m = 0)\n(h₃ : y n = 0) : \\exists t : \\Z, m - n = t * Real.pi := by''',
100
+ "/-- Let $a_1, a_2,\\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/",
101
+ 2500
102
+ ],
103
+ [
104
+ '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/\ntheorem mathd_algebra_209 (Οƒ : Equiv \\R \\R) (hβ‚€ : Οƒ.2 2 = 10) (h₁ : Οƒ.2 10 = 1) (hβ‚‚ : Οƒ.2 1 = 2) :\nΟƒ.1 (Οƒ.1 10) = 1 := by''',
105
+ "/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/",
106
+ 2500
107
+ ],
108
+ [
109
+ '''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-//\ntheorem mathd_algebra_44 (s t : \\R) (hβ‚€ : s = 9 - 2 * t) (h₁ : t = 3 * s + 1) : s = 1 \\wedge t = 4 := by''',
110
+ "/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-/",
111
+ 2500
112
+ ],
113
  ]
114
 
115
  model_name = "AI-MO/Kimina-Prover-Distill-8B"
 
192
  with gr.Column:
193
  gr.Markdown(description)
194
  with gr.Column:
195
+ gr.Markdown(joinus)
196
  with gr.Row():
197
  with gr.Column():
198
+
199
  user_input = gr.Textbox(label="Your message or formal statement", lines=4)
200
  informal = gr.Textbox(value=additional_info_prompt, label="Optional informal prefix")
201
  max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="Max Tokens")
 
206
  json_out = gr.JSON(label="Full Output")
207
  code_out = gr.Code(label="Extracted Lean4 Code", language="python")
208
  state = gr.State([])
 
209
  submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state])
210
+ gr.Examples(
211
+ examples=examples,
212
+ inputs=["user_input", "informal", "max_tokens"],
213
+ label="Example Problems"
214
+ )
215
  gr.Markdown(citation)
216
  demo.launch()
217