Math / app.py
Tonic's picture
remove lean4 from gradio block declaration, replace with python
7bd644e unverified
raw
history blame
7.67 kB
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
LEAN4_DEFAULT_HEADER = (
"import Mathlib\n"
"import Aesop\n\n"
"set_option maxHeartbeats 0\n\n"
"open BigOperators Real Nat Topology Rat\n"
)
title = "# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math"
description = """
**Kimina-Prover-72B** is a state-of-the-art large formal reasoning model for Lean 4, achieving **80%+ pass rate** on the miniF2F benchmark, outperforming all prior works.\
Trained with Reinforcement Learning, 72B parameters, and a 32K token context window.\
- [Kimina-Prover-Preview GitHub](https://github.com/MoonshotAI/Kimina-Prover-Preview)\
- [Hugging Face: AI-MO/Kimina-Prover-72B](https://huggingface.co/AI-MO/Kimina-Prover-72B)\
- [Kimina Prover blog](https://huggingface.co/blog/AI-MO/kimina-prover)\
- [unimath dataset](https://huggingface.co/datasets/introspector/unimath)\
"""
citation = """> **Citation:**
> ```
> @article{kimina_prover_2025,
> title = {Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning},
> author = {Wang, Haiming and Unsal, Mert and ...},
> year = {2025},
> url = {http://arxiv.org/abs/2504.11354},
> }
> ```
"""
joinus ="""
### Join us:
๐ŸŒŸTeamTonic๐ŸŒŸ is always making cool demos! Join our active builder's ๐Ÿ› ๏ธcommunity ๐Ÿ‘ป
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP)
On ๐Ÿค—Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer)
On ๐ŸŒGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute to๐ŸŒŸ [Build Tonic](https://git.tonic-ai.com/contribute)
๐Ÿค—Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant ๐Ÿค—
"""
# Build the initial system prompt
SYSTEM_PROMPT = "You are an expert in mathematics and Lean 4."
# Helper to build a Lean4 code block
def build_formal_block(formal_statement, informal_prefix=""):
return (
f"{LEAN4_DEFAULT_HEADER}\n"
f"{informal_prefix}\n"
f"{formal_statement}"
)
# Helper to extract the first Lean4 code block from text
def extract_lean4_code(text):
code_block = re.search(r"```lean4(.*?)(```|$)", text, re.DOTALL)
if code_block:
code = code_block.group(1)
lines = [line for line in code.split('\n') if line.strip()]
return '\n'.join(lines)
return text.strip()
# Example problems
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X โ†’ P) โ†’ P
yp : (Y โ†’ P) โ†’ P
X0 : X ร— Y โ†’ P
x : X
============================
(Y โ†’ P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x โŠ‘ y โ‰ƒ (โˆ€ i : approximating_family CX x, approximating_family CX x i โŠ‘ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
examples = [
[unimath1, additional_info_prompt, 2500],
[unimath2, additional_info_prompt, 2500],
[unimath3, additional_info_prompt, 2500],
[unimath4, additional_info_prompt, 2500]
]
model_name = "AI-MO/Kimina-Prover-Distill-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
# Set generation config
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.do_sample = True
model.generation_config.temperature = 0.6
model.generation_config.top_p = 0.95
# Initialize chat history with system prompt
def init_chat(formal_statement, informal_prefix):
user_prompt = (
"Think about and solve the following problem step by step in Lean 4.\n"
"# Problem: Provide a formal proof for the following statement.\n"
f"# Formal statement:\n```lean4\n{build_formal_block(formal_statement, informal_prefix)}\n```\n"
)
return [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_prompt}
]
# Gradio chat handler
@spaces.GPU
def chat_handler(user_message, informal_prefix, max_tokens, chat_history):
# If chat_history is empty, initialize with system and first user message
if not chat_history or len(chat_history) < 2:
chat_history = init_chat(user_message, informal_prefix)
display_history = [("user", user_message)]
else:
# Append new user message
chat_history.append({"role": "user", "content": user_message})
display_history = []
for msg in chat_history:
if msg["role"] == "user":
display_history.append(("user", msg["content"]))
elif msg["role"] == "assistant":
display_history.append(("assistant", msg["content"]))
# Format prompt using chat template
prompt = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=model.generation_config.temperature,
top_p=model.generation_config.top_p,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new assistant message (after the prompt)
new_response = result[len(prompt):].strip()
# Add assistant message to chat history
chat_history.append({"role": "assistant", "content": new_response})
display_history.append(("assistant", new_response))
# Extract Lean4 code
code = extract_lean4_code(new_response)
# Prepare output
output_data = {
"model_input": prompt,
"model_output": result,
"lean4_code": code,
"chat_history": chat_history
}
return display_history, json.dumps(output_data, indent=2), code, chat_history
def main():
with gr.Blocks() as demo:
# Title and Model Description
gr.Markdown("""# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math""")
gr.Markdown(description)
gr.Markdown(joinus)
with gr.Row():
with gr.Column():
chat = gr.Chatbot(label="Chat History")
user_input = gr.Textbox(label="Your message or formal statement", lines=4)
informal = gr.Textbox(value=additional_info_prompt, label="Optional informal prefix")
max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="Max Tokens")
submit = gr.Button("Send")
with gr.Column():
json_out = gr.JSON(label="Full Output")
code_out = gr.Code(label="Extracted Lean4 Code", language="python")
state = gr.State([])
# On submit, call chat_handler
submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state])
gr.Markdown(citation)
demo.launch()
if __name__ == "__main__":
main()