import gradio as gr import torch from transformers import AutoModel, AutoTokenizer, AutoConfig import os import base64 import spaces import io from PIL import Image import numpy as np import yaml from pathlib import Path from globe import title, description, modelinfor, joinus, howto import uuid import tempfile import time import shutil import cv2 import re import warnings # Try to import spaces module for ZeroGPU compatibility try: import spaces SPACES_AVAILABLE = True except ImportError: SPACES_AVAILABLE = False # Create a dummy decorator for local development def dummy_gpu_decorator(func): return func spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})() # Suppress specific warnings that are known issues with GOT-OCR warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set") warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`") warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred") warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated") def initialize_model_safely(): """ Safely initialize the GOT-OCR model with proper error handling for ZeroGPU """ model_name = 'ucaslcl/GOT-OCR2_0' device = 'cuda' if torch.cuda.is_available() else 'cpu' try: # Initialize tokenizer with proper settings tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) # Set pad token properly if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained( 'ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True, pad_token_id=tokenizer.eos_token_id, use_cache=True, torch_dtype=torch.float16 if device == 'cuda' else torch.float32 ) model = model.eval().to(device) model.config.pad_token_id = tokenizer.eos_token_id # Ensure the model has proper tokenizer settings if hasattr(model, 'config'): model.config.pad_token_id = tokenizer.eos_token_id model.config.eos_token_id = tokenizer.eos_token_id return model, tokenizer except Exception as e: print(f"Error initializing model: {str(e)}") # Fallback initialization try: tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModel.from_pretrained( 'ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True ) model = model.eval().to(device) return model, tokenizer except Exception as fallback_error: raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}") model, tokenizer = initialize_model_safely() UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() def safe_model_chat(model, tokenizer, image_path, **kwargs): """ Safe wrapper for model.chat to handle DynamicCache and other compatibility issues Optimized for ZeroGPU environments """ try: # First attempt: normal call return model.chat(tokenizer, image_path, **kwargs) except AttributeError as e: if "get_max_length" in str(e): # Try to fix the cache issue by clearing it try: if hasattr(model, 'clear_cache'): model.clear_cache() # Retry the call return model.chat(tokenizer, image_path, **kwargs) except: # If still failing, try with different parameters try: # Remove any cache-related parameters kwargs_copy = kwargs.copy() if 'use_cache' in kwargs_copy: del kwargs_copy['use_cache'] return model.chat(tokenizer, image_path, **kwargs_copy) except: raise Exception("Model compatibility issue: DynamicCache error. Please try again.") else: raise e except Exception as e: # Handle other potential issues if "attention_mask" in str(e).lower(): # Try to handle attention mask issues try: return model.chat(tokenizer, image_path, **kwargs) except: raise Exception(f"Attention mask error: {str(e)}") else: raise e def safe_model_chat_crop(model, tokenizer, image_path, **kwargs): """ Safe wrapper for model.chat_crop to handle DynamicCache and other compatibility issues Optimized for ZeroGPU environments """ try: # First attempt: normal call return model.chat_crop(tokenizer, image_path, **kwargs) except AttributeError as e: if "get_max_length" in str(e): # Try to fix the cache issue by clearing it try: if hasattr(model, 'clear_cache'): model.clear_cache() # Retry the call return model.chat_crop(tokenizer, image_path, **kwargs) except: # If still failing, try with different parameters try: # Remove any cache-related parameters kwargs_copy = kwargs.copy() if 'use_cache' in kwargs_copy: del kwargs_copy['use_cache'] return model.chat_crop(tokenizer, image_path, **kwargs_copy) except: raise Exception("Model compatibility issue: DynamicCache error. Please try again.") else: raise e except Exception as e: # Handle other potential issues if "attention_mask" in str(e).lower(): # Try to handle attention mask issues try: return model.chat_crop(tokenizer, image_path, **kwargs) except: raise Exception(f"Attention mask error: {str(e)}") else: raise e @spaces.GPU() def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None): if image is None: return "Error: No image provided", None, None unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") try: if isinstance(image, dict): composite_image = image.get("composite") if composite_image is not None: if isinstance(composite_image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)) elif isinstance(composite_image, Image.Image): composite_image.save(image_path) else: return "Error: Unsupported image format from ImageEditor", None, None else: return "Error: No composite image found in ImageEditor output", None, None elif isinstance(image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) elif isinstance(image, str): shutil.copy(image, image_path) else: return "Error: Unsupported image format", None, None # Wrap model calls in try-except to handle DynamicCache errors try: if task == "Plain Text OCR": res = safe_model_chat(model, tokenizer, image_path, ocr_type='ocr') return res, None, unique_id else: if task == "Format Text OCR": res = safe_model_chat(model, tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Box)": res = safe_model_chat(model, tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Color)": res = safe_model_chat(model, tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) elif task == "Multi-crop OCR": res = safe_model_chat_crop(model, tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Render Formatted OCR": res = safe_model_chat(model, tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content, unique_id else: return res, None, unique_id except AttributeError as e: if "get_max_length" in str(e): # Handle DynamicCache compatibility issue return "Error: Model compatibility issue detected. Please try again or contact support.", None, None else: raise e except Exception as e: return f"Error: {str(e)}", None, None finally: if os.path.exists(image_path): os.remove(image_path) def update_image_input(task): if task == "Fine-grained OCR (Color)": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_inputs(task): if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]: return [ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Box)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Color)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=False), gr.update(visible=True, choices=["red", "green", "blue"]), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) ] def parse_latex_output(res): # Split the input, preserving newlines and empty lines lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL) parsed_lines = [] in_latex = False latex_buffer = [] for line in lines: if line == '\n': if in_latex: latex_buffer.append(line) else: parsed_lines.append(line) continue line = line.strip() latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"'] contains_latex = any(re.search(pattern, line) for pattern in latex_patterns) if contains_latex: if not in_latex: in_latex = True latex_buffer = ['$$'] latex_buffer.append(line) else: if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) in_latex = False latex_buffer = [] parsed_lines.append(line) if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) return '$$\\$$\n'.join(parsed_lines) def ocr_demo(image, task, ocr_type, ocr_box, ocr_color): """ Main OCR demonstration function that processes images and returns results. Args: image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200) ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue Returns: tuple: (formatted_result, html_output) - formatted_result (str): Formatted OCR result text - html_output (str): HTML visualization if applicable """ res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color) if isinstance(res, str) and res.startswith("Error:"): return res, None res = res.replace("\\title", "\\title ") formatted_res = res # formatted_res = parse_latex_output(res) if html_content: encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') iframe_src = f"data:text/html;base64,{encoded_html}" iframe = f'' download_link = f'Download Full Result' return formatted_res, f"{download_link}
{iframe}" return formatted_res, None def cleanup_old_files(): current_time = time.time() for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: for file_path in Path(folder).glob('*'): if current_time - file_path.stat().st_mtime > 3600: # 1 hour file_path.unlink() with gr.Blocks(theme=gr.themes.Base()) as demo: with gr.Row(): gr.Markdown(title) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(description) with gr.Column(scale=1): with gr.Group(): gr.Markdown(modelinfor) gr.Markdown(joinus) with gr.Row(): with gr.Accordion("How to use Fine-grained OCR (Color)", open=False): with gr.Row(): gr.Image("res/image/howto_1.png", label="Select the Following Parameters") gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor") gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)") gr.Image("res/image/howto_4.png", label="Make a Box Around The Text") with gr.Row(): with gr.Group(): gr.Markdown(howto) with gr.Row(): with gr.Column(scale=1): with gr.Group(): image_input = gr.Image(type="filepath", label="Input Image") image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False) task_dropdown = gr.Dropdown( choices=[ "Plain Text OCR", "Format Text OCR", "Fine-grained OCR (Box)", "Fine-grained OCR (Color)", "Multi-crop OCR", "Render Formatted OCR" ], label="Select Task", value="Plain Text OCR" ) ocr_type_dropdown = gr.Dropdown( choices=["ocr", "format"], label="OCR Type", visible=False ) ocr_box_input = gr.Textbox( label="OCR Box (x1,y1,x2,y2)", placeholder="[100,100,200,200]", visible=False ) ocr_color_dropdown = gr.Dropdown( choices=["red", "green", "blue"], label="OCR Color", visible=False ) # with gr.Row(): # max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens") # no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size") submit_button = gr.Button("Process") editor_submit_button = gr.Button("Process Edited Image", visible=False) with gr.Column(scale=1): with gr.Group(): output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR") output_html = gr.HTML(label="🫴🏻📸GOT-OCR") task_dropdown.change( update_inputs, inputs=[task_dropdown], outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button] ) task_dropdown.change( update_image_input, inputs=[task_dropdown], outputs=[image_input, image_editor, editor_submit_button] ) submit_button.click( ocr_demo, inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) editor_submit_button.click( ocr_demo, inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) if __name__ == "__main__": cleanup_old_files() demo.launch(ssr_mode = False, mcp_server=True)