Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,262 Bytes
cef4f97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import os
import base64
import spaces
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
@spaces.GPU
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
if task == "Plain Text OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
elif task == "Format Text OCR":
res = model.chat(tokenizer, image, ocr_type='format')
elif task == "Fine-grained OCR (Box)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
elif task == "Fine-grained OCR (Color)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
elif task == "Multi-crop OCR":
res = model.chat_crop(tokenizer, image_file=image)
elif task == "Render Formatted OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
with open('./demo.html', 'r') as f:
html_content = f.read()
return res, html_content
return res, None
def update_inputs(task):
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
return [gr.update(visible=False)] * 4
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
gr.update(visible=False)
]
elif task == "Render Formatted OCR":
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
if html_content:
return res, html_content
return res, None
with gr.Blocks() as demo:
gr.Markdown("#🙋🏻♂️Welcome to Tonic's🫴🏻📸GOT-OCR")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="e.g., 100,100,200,200",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
render_checkbox = gr.Checkbox(
label="Render Result",
visible=False
)
submit_button = gr.Button("Process")
with gr.Column():
output_text = gr.Textbox(label="OCR Result")
output_html = gr.HTML(label="Rendered HTML Output")
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
)
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_text, output_html]
)
demo.launch() |