Spaces:
Running
Running
Change repo structure to adapt to HF new space GB limit
Browse files- Home.py +7 -0
- src/{FAISS.ipynb → FAISS/FAISS.ipynb} +63 -3
- src/Speeches/query.ipynb +0 -267
Home.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import chatbot, keyword_search
|
|
|
3 |
#from gradio_calendar import Calendar
|
4 |
#from datetime import datetime
|
5 |
|
@@ -13,6 +14,11 @@ from src.chatbot import chatbot, keyword_search
|
|
13 |
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) # Your token here
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Define important variables
|
18 |
legislature_periods = [
|
@@ -42,6 +48,7 @@ legislature_periods = [
|
|
42 |
partys = ['All','CDU/CSU','SPD','AfD','Grüne','FDP','DIE LINKE.','GB/BHE','DRP', 'WAV', 'NR', 'BP', 'FU', 'SSW', 'KPD', 'DA', 'FVP','DP','Z', 'PDS','Fraktionslos','not found', 'Gast']
|
43 |
|
44 |
|
|
|
45 |
|
46 |
with gr.Blocks() as App:
|
47 |
with gr.Tab("ChatBot"):
|
|
|
1 |
import gradio as gr
|
2 |
from src.chatbot import chatbot, keyword_search
|
3 |
+
from huggingface_hub import snapshot_download
|
4 |
#from gradio_calendar import Calendar
|
5 |
#from datetime import datetime
|
6 |
|
|
|
14 |
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) # Your token here
|
15 |
|
16 |
|
17 |
+
# Retrieve Vectorstore
|
18 |
+
REPO_ID = "TomData/test"
|
19 |
+
LOCAL_DIR = "src/FAISS"
|
20 |
+
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, repo_type="dataset")
|
21 |
+
|
22 |
|
23 |
# Define important variables
|
24 |
legislature_periods = [
|
|
|
48 |
partys = ['All','CDU/CSU','SPD','AfD','Grüne','FDP','DIE LINKE.','GB/BHE','DRP', 'WAV', 'NR', 'BP', 'FU', 'SSW', 'KPD', 'DA', 'FVP','DP','Z', 'PDS','Fraktionslos','not found', 'Gast']
|
49 |
|
50 |
|
51 |
+
# Define Gradio App Layout
|
52 |
|
53 |
with gr.Blocks() as App:
|
54 |
with gr.Tab("ChatBot"):
|
src/{FAISS.ipynb → FAISS/FAISS.ipynb}
RENAMED
@@ -2,11 +2,13 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
|
|
|
|
10 |
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
11 |
"from langchain_community.document_loaders import DataFrameLoader\n",
|
12 |
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
@@ -19,7 +21,58 @@
|
|
19 |
"cell_type": "markdown",
|
20 |
"metadata": {},
|
21 |
"source": [
|
22 |
-
"###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
]
|
24 |
},
|
25 |
{
|
@@ -173,7 +226,7 @@
|
|
173 |
}
|
174 |
],
|
175 |
"source": [
|
176 |
-
"
|
177 |
"df['date'] = pd.to_datetime(df['date'])\n"
|
178 |
]
|
179 |
},
|
@@ -304,6 +357,13 @@
|
|
304 |
"\n",
|
305 |
" \n"
|
306 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
}
|
308 |
],
|
309 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import psycopg2\n",
|
11 |
+
"\n",
|
12 |
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
13 |
"from langchain_community.document_loaders import DataFrameLoader\n",
|
14 |
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
|
|
21 |
"cell_type": "markdown",
|
22 |
"metadata": {},
|
23 |
"source": [
|
24 |
+
"### Retrieve Speeches"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# db_connection -----------------------------------------------------------\n",
|
34 |
+
"con_details = {\n",
|
35 |
+
" \"host\" : \"localhost\",\n",
|
36 |
+
" \"database\" : \"next\",\n",
|
37 |
+
" \"user\" : \"postgres\",\n",
|
38 |
+
" \"password\" : \"postgres\",\n",
|
39 |
+
" \"port\" : \"5433\"\n",
|
40 |
+
"}\n",
|
41 |
+
"con = psycopg2.connect(**con_details)\n",
|
42 |
+
"\n",
|
43 |
+
"# get data tables ---------------------------------------------------------\n",
|
44 |
+
"df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
|
45 |
+
" FROM open_discourse.speeches AS s\n",
|
46 |
+
" INNER JOIN open_discourse.factions AS f ON\n",
|
47 |
+
" s.faction_id = f.id;\"\"\", con)"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "markdown",
|
52 |
+
"metadata": {},
|
53 |
+
"source": [
|
54 |
+
"### Process speeches"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"print(set(df['party'].to_list()))"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"# Removing keys from interruptions of a speech\n",
|
73 |
+
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) \n",
|
74 |
+
"df['date'] = pd.to_datetime(df['date'])\n",
|
75 |
+
"df"
|
76 |
]
|
77 |
},
|
78 |
{
|
|
|
226 |
}
|
227 |
],
|
228 |
"source": [
|
229 |
+
"# Convert to proper time format\n",
|
230 |
"df['date'] = pd.to_datetime(df['date'])\n"
|
231 |
]
|
232 |
},
|
|
|
357 |
"\n",
|
358 |
" \n"
|
359 |
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "markdown",
|
363 |
+
"metadata": {},
|
364 |
+
"source": [
|
365 |
+
"This data has been uploaded to: https://huggingface.co/datasets/TomData/test"
|
366 |
+
]
|
367 |
}
|
368 |
],
|
369 |
"metadata": {
|
src/Speeches/query.ipynb
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import psycopg2\n",
|
10 |
-
"import pandas as pd"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "markdown",
|
15 |
-
"metadata": {},
|
16 |
-
"source": [
|
17 |
-
"### Pandas\n"
|
18 |
-
]
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"cell_type": "code",
|
22 |
-
"execution_count": 13,
|
23 |
-
"metadata": {},
|
24 |
-
"outputs": [
|
25 |
-
{
|
26 |
-
"name": "stderr",
|
27 |
-
"output_type": "stream",
|
28 |
-
"text": [
|
29 |
-
"C:\\Users\\Tom\\AppData\\Local\\Temp\\ipykernel_12368\\2515868855.py:12: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
|
30 |
-
" df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
|
31 |
-
]
|
32 |
-
}
|
33 |
-
],
|
34 |
-
"source": [
|
35 |
-
"# db_connection -----------------------------------------------------------\n",
|
36 |
-
"con_details = {\n",
|
37 |
-
" \"host\" : \"localhost\",\n",
|
38 |
-
" \"database\" : \"next\",\n",
|
39 |
-
" \"user\" : \"postgres\",\n",
|
40 |
-
" \"password\" : \"postgres\",\n",
|
41 |
-
" \"port\" : \"5433\"\n",
|
42 |
-
"}\n",
|
43 |
-
"con = psycopg2.connect(**con_details)\n",
|
44 |
-
"\n",
|
45 |
-
"# get data tables ---------------------------------------------------------\n",
|
46 |
-
"df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
|
47 |
-
" FROM open_discourse.speeches AS s\n",
|
48 |
-
" INNER JOIN open_discourse.factions AS f ON\n",
|
49 |
-
" s.faction_id = f.id;\"\"\", con)\n",
|
50 |
-
"\n",
|
51 |
-
"\n"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "markdown",
|
56 |
-
"metadata": {},
|
57 |
-
"source": [
|
58 |
-
"### Data Cleaning"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": 14,
|
64 |
-
"metadata": {},
|
65 |
-
"outputs": [
|
66 |
-
{
|
67 |
-
"name": "stdout",
|
68 |
-
"output_type": "stream",
|
69 |
-
"text": [
|
70 |
-
"{'FVP', 'DA', 'FDP', 'BP', 'DP', 'DRP', 'PDS', 'SSW', 'Grüne', 'Fraktionslos', 'WAV', 'Gast', 'FU', 'KPD', 'DIE LINKE.', 'CDU/CSU', 'not found', 'GB/BHE', 'AfD', 'SPD', 'NR', 'Z'}\n"
|
71 |
-
]
|
72 |
-
}
|
73 |
-
],
|
74 |
-
"source": [
|
75 |
-
"# Unique partys\n",
|
76 |
-
"print(set(df['party'].to_list()))"
|
77 |
-
]
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"cell_type": "code",
|
81 |
-
"execution_count": null,
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [
|
84 |
-
{
|
85 |
-
"data": {
|
86 |
-
"text/html": [
|
87 |
-
"<div>\n",
|
88 |
-
"<style scoped>\n",
|
89 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
90 |
-
" vertical-align: middle;\n",
|
91 |
-
" }\n",
|
92 |
-
"\n",
|
93 |
-
" .dataframe tbody tr th {\n",
|
94 |
-
" vertical-align: top;\n",
|
95 |
-
" }\n",
|
96 |
-
"\n",
|
97 |
-
" .dataframe thead th {\n",
|
98 |
-
" text-align: right;\n",
|
99 |
-
" }\n",
|
100 |
-
"</style>\n",
|
101 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
102 |
-
" <thead>\n",
|
103 |
-
" <tr style=\"text-align: right;\">\n",
|
104 |
-
" <th></th>\n",
|
105 |
-
" <th>id</th>\n",
|
106 |
-
" <th>speech_content</th>\n",
|
107 |
-
" <th>date</th>\n",
|
108 |
-
" <th>party</th>\n",
|
109 |
-
" </tr>\n",
|
110 |
-
" </thead>\n",
|
111 |
-
" <tbody>\n",
|
112 |
-
" <tr>\n",
|
113 |
-
" <th>0</th>\n",
|
114 |
-
" <td>0</td>\n",
|
115 |
-
" <td>Meine Damen und Herren! Ich eröffne die 2. Sit...</td>\n",
|
116 |
-
" <td>1949-09-12</td>\n",
|
117 |
-
" <td>not found</td>\n",
|
118 |
-
" </tr>\n",
|
119 |
-
" <tr>\n",
|
120 |
-
" <th>1</th>\n",
|
121 |
-
" <td>1</td>\n",
|
122 |
-
" <td>Der Bundesrat ist versammelt, Herr Präsident.\\n</td>\n",
|
123 |
-
" <td>1949-09-12</td>\n",
|
124 |
-
" <td>not found</td>\n",
|
125 |
-
" </tr>\n",
|
126 |
-
" <tr>\n",
|
127 |
-
" <th>2</th>\n",
|
128 |
-
" <td>2</td>\n",
|
129 |
-
" <td>Ich danke für diese Erklärung. Ich stelle dami...</td>\n",
|
130 |
-
" <td>1949-09-12</td>\n",
|
131 |
-
" <td>not found</td>\n",
|
132 |
-
" </tr>\n",
|
133 |
-
" <tr>\n",
|
134 |
-
" <th>3</th>\n",
|
135 |
-
" <td>3</td>\n",
|
136 |
-
" <td>Ja, ich habe den Wunsch.\\n</td>\n",
|
137 |
-
" <td>1949-09-12</td>\n",
|
138 |
-
" <td>not found</td>\n",
|
139 |
-
" </tr>\n",
|
140 |
-
" <tr>\n",
|
141 |
-
" <th>4</th>\n",
|
142 |
-
" <td>4</td>\n",
|
143 |
-
" <td>Ich erteile dem Herrn Bundespräsidenten das Wo...</td>\n",
|
144 |
-
" <td>1949-09-12</td>\n",
|
145 |
-
" <td>not found</td>\n",
|
146 |
-
" </tr>\n",
|
147 |
-
" <tr>\n",
|
148 |
-
" <th>...</th>\n",
|
149 |
-
" <td>...</td>\n",
|
150 |
-
" <td>...</td>\n",
|
151 |
-
" <td>...</td>\n",
|
152 |
-
" <td>...</td>\n",
|
153 |
-
" </tr>\n",
|
154 |
-
" <tr>\n",
|
155 |
-
" <th>930955</th>\n",
|
156 |
-
" <td>1084268</td>\n",
|
157 |
-
" <td>\\n\\nWir sind zwar Kollegen.</td>\n",
|
158 |
-
" <td>2022-12-16</td>\n",
|
159 |
-
" <td>not found</td>\n",
|
160 |
-
" </tr>\n",
|
161 |
-
" <tr>\n",
|
162 |
-
" <th>930956</th>\n",
|
163 |
-
" <td>1084269</td>\n",
|
164 |
-
" <td>\\n\\nLiebe, sehr geehrte Frau Präsidentin!</td>\n",
|
165 |
-
" <td>2022-12-16</td>\n",
|
166 |
-
" <td>CDU/CSU</td>\n",
|
167 |
-
" </tr>\n",
|
168 |
-
" <tr>\n",
|
169 |
-
" <th>930957</th>\n",
|
170 |
-
" <td>1084270</td>\n",
|
171 |
-
" <td>\\n\\nVielen Dank.</td>\n",
|
172 |
-
" <td>2022-12-16</td>\n",
|
173 |
-
" <td>not found</td>\n",
|
174 |
-
" </tr>\n",
|
175 |
-
" <tr>\n",
|
176 |
-
" <th>930958</th>\n",
|
177 |
-
" <td>1084272</td>\n",
|
178 |
-
" <td>\\n\\nDen Abschluss dieser Aktuellen Stunde bild...</td>\n",
|
179 |
-
" <td>2022-12-16</td>\n",
|
180 |
-
" <td>not found</td>\n",
|
181 |
-
" </tr>\n",
|
182 |
-
" <tr>\n",
|
183 |
-
" <th>930959</th>\n",
|
184 |
-
" <td>1084273</td>\n",
|
185 |
-
" <td>\\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...</td>\n",
|
186 |
-
" <td>2022-12-16</td>\n",
|
187 |
-
" <td>SPD</td>\n",
|
188 |
-
" </tr>\n",
|
189 |
-
" </tbody>\n",
|
190 |
-
"</table>\n",
|
191 |
-
"<p>930960 rows × 4 columns</p>\n",
|
192 |
-
"</div>"
|
193 |
-
],
|
194 |
-
"text/plain": [
|
195 |
-
" id speech_content \\\n",
|
196 |
-
"0 0 Meine Damen und Herren! Ich eröffne die 2. Sit... \n",
|
197 |
-
"1 1 Der Bundesrat ist versammelt, Herr Präsident.\\n \n",
|
198 |
-
"2 2 Ich danke für diese Erklärung. Ich stelle dami... \n",
|
199 |
-
"3 3 Ja, ich habe den Wunsch.\\n \n",
|
200 |
-
"4 4 Ich erteile dem Herrn Bundespräsidenten das Wo... \n",
|
201 |
-
"... ... ... \n",
|
202 |
-
"930955 1084268 \\n\\nWir sind zwar Kollegen. \n",
|
203 |
-
"930956 1084269 \\n\\nLiebe, sehr geehrte Frau Präsidentin! \n",
|
204 |
-
"930957 1084270 \\n\\nVielen Dank. \n",
|
205 |
-
"930958 1084272 \\n\\nDen Abschluss dieser Aktuellen Stunde bild... \n",
|
206 |
-
"930959 1084273 \\n\\nSehr geehrte Frau Präsidentin! Werte Kolle... \n",
|
207 |
-
"\n",
|
208 |
-
" date party \n",
|
209 |
-
"0 1949-09-12 not found \n",
|
210 |
-
"1 1949-09-12 not found \n",
|
211 |
-
"2 1949-09-12 not found \n",
|
212 |
-
"3 1949-09-12 not found \n",
|
213 |
-
"4 1949-09-12 not found \n",
|
214 |
-
"... ... ... \n",
|
215 |
-
"930955 2022-12-16 not found \n",
|
216 |
-
"930956 2022-12-16 CDU/CSU \n",
|
217 |
-
"930957 2022-12-16 not found \n",
|
218 |
-
"930958 2022-12-16 not found \n",
|
219 |
-
"930959 2022-12-16 SPD \n",
|
220 |
-
"\n",
|
221 |
-
"[930960 rows x 4 columns]"
|
222 |
-
]
|
223 |
-
},
|
224 |
-
"execution_count": 16,
|
225 |
-
"metadata": {},
|
226 |
-
"output_type": "execute_result"
|
227 |
-
}
|
228 |
-
],
|
229 |
-
"source": [
|
230 |
-
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
|
231 |
-
"df['date'] = pd.to_datetime(df['date'])\n",
|
232 |
-
"df"
|
233 |
-
]
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"cell_type": "code",
|
237 |
-
"execution_count": null,
|
238 |
-
"metadata": {},
|
239 |
-
"outputs": [],
|
240 |
-
"source": [
|
241 |
-
"# Dave to pickle\n",
|
242 |
-
"df.to_pickle(\"speeches_1949_09_12\")"
|
243 |
-
]
|
244 |
-
}
|
245 |
-
],
|
246 |
-
"metadata": {
|
247 |
-
"kernelspec": {
|
248 |
-
"display_name": "Python 3",
|
249 |
-
"language": "python",
|
250 |
-
"name": "python3"
|
251 |
-
},
|
252 |
-
"language_info": {
|
253 |
-
"codemirror_mode": {
|
254 |
-
"name": "ipython",
|
255 |
-
"version": 3
|
256 |
-
},
|
257 |
-
"file_extension": ".py",
|
258 |
-
"mimetype": "text/x-python",
|
259 |
-
"name": "python",
|
260 |
-
"nbconvert_exporter": "python",
|
261 |
-
"pygments_lexer": "ipython3",
|
262 |
-
"version": "3.11.4"
|
263 |
-
}
|
264 |
-
},
|
265 |
-
"nbformat": 4,
|
266 |
-
"nbformat_minor": 2
|
267 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|