Spaces:
Running
Running
upload refactored code to exclude small chunks without data files
Browse files- Home.py +11 -0
- src/FAISS.ipynb +90 -33
- src/Speeches/{querry.ipynb → query.ipynb} +10 -162
- src/chatbot.py +118 -10
- src/vectordatabase.py +0 -152
Home.py
CHANGED
@@ -3,6 +3,17 @@ from src.chatbot import chatbot, keyword_search
|
|
3 |
#from gradio_calendar import Calendar
|
4 |
#from datetime import datetime
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Define important variables
|
7 |
legislature_periods = [
|
8 |
"All",
|
|
|
3 |
#from gradio_calendar import Calendar
|
4 |
#from datetime import datetime
|
5 |
|
6 |
+
|
7 |
+
# Log into HF
|
8 |
+
# Only required when running locally
|
9 |
+
# import os
|
10 |
+
# from dotenv import load_dotenv
|
11 |
+
# from huggingface_hub import login
|
12 |
+
# load_dotenv(dotenv_path=".env")
|
13 |
+
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) # Your token here
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
# Define important variables
|
18 |
legislature_periods = [
|
19 |
"All",
|
src/FAISS.ipynb
CHANGED
@@ -2,7 +2,29 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -145,37 +167,66 @@
|
|
145 |
"[930960 rows x 4 columns]"
|
146 |
]
|
147 |
},
|
148 |
-
"execution_count":
|
149 |
"metadata": {},
|
150 |
"output_type": "execute_result"
|
151 |
}
|
152 |
],
|
153 |
"source": [
|
154 |
-
"
|
155 |
-
"
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
"\n",
|
162 |
-
"
|
163 |
-
"df['date'] = pd.to_datetime(df['date'])\n",
|
164 |
-
"# Split speeches into documents\n",
|
165 |
-
"df"
|
166 |
]
|
167 |
},
|
168 |
{
|
169 |
"cell_type": "code",
|
170 |
-
"execution_count":
|
171 |
"metadata": {},
|
172 |
"outputs": [
|
173 |
{
|
174 |
"name": "stderr",
|
175 |
"output_type": "stream",
|
176 |
"text": [
|
177 |
-
"c:\\Python\\Lib\\site-packages\\huggingface_hub\\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
178 |
-
" warnings.warn(\n",
|
179 |
"c:\\Python\\Lib\\site-packages\\huggingface_hub\\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
180 |
" warnings.warn(\n"
|
181 |
]
|
@@ -208,44 +259,50 @@
|
|
208 |
}
|
209 |
],
|
210 |
"source": [
|
211 |
-
"\n",
|
212 |
"dates = [\"1953-10-06\", \"1957-10-16\", \"1961-10-17\", \"1965-10-19\", \"1969-10-20\", \"1972-12-13\", \"1976-12-14\", \"1980-11-04\", \"1983-03-29\", \"1987-02-18\",\"1990-12-20\", \"1994-11-10\", \"1998-10-26\", \"2002-10-17\", \"2005-10-18\", \"2009-10-27\", \"2013-10-22\",\"2017-10-24\",\"2021-10-26\", None]\n",
|
|
|
213 |
"embeddings = HuggingFaceEmbeddings(model_name=\"paraphrase-multilingual-MiniLM-L12-v2\")\n",
|
214 |
"\n",
|
215 |
-
"#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
"\n",
|
|
|
|
|
217 |
"period = 1\n",
|
218 |
"previous_date = None\n",
|
|
|
|
|
219 |
"for date in dates:\n",
|
220 |
" if previous_date is None:\n",
|
221 |
-
"
|
222 |
" elif date is None:\n",
|
223 |
-
"
|
224 |
" else:\n",
|
225 |
-
"
|
226 |
"\n",
|
227 |
" \n",
|
228 |
-
" # Split text into documents\n",
|
229 |
-
" documents =
|
|
|
|
|
230 |
" index_name = f'{period}_legislature'\n",
|
231 |
" db = FAISS.from_documents(documents, embeddings)\n",
|
232 |
" db.save_local(folder_path=\"FAISS\", index_name=index_name)\n",
|
233 |
" print(f\"Sucessfully created vector store for {period}. legislature\")\n",
|
234 |
-
"
|
|
|
235 |
" period += 1\n",
|
236 |
" previous_date = date\n",
|
237 |
"\n",
|
238 |
-
"\n"
|
239 |
-
]
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"cell_type": "code",
|
243 |
-
"execution_count": null,
|
244 |
-
"metadata": {},
|
245 |
-
"outputs": [],
|
246 |
-
"source": [
|
247 |
"\n",
|
248 |
-
"\n"
|
249 |
]
|
250 |
}
|
251 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
11 |
+
"from langchain_community.document_loaders import DataFrameLoader\n",
|
12 |
+
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
13 |
+
"from langchain_community.vectorstores import FAISS\n",
|
14 |
+
"from datetime import datetime\n",
|
15 |
+
"\n"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"metadata": {},
|
21 |
+
"source": [
|
22 |
+
"### Load the whole speeches data"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
"metadata": {},
|
29 |
"outputs": [
|
30 |
{
|
|
|
167 |
"[930960 rows x 4 columns]"
|
168 |
]
|
169 |
},
|
170 |
+
"execution_count": 3,
|
171 |
"metadata": {},
|
172 |
"output_type": "execute_result"
|
173 |
}
|
174 |
],
|
175 |
"source": [
|
176 |
+
"df = pd.read_pickle(r\"C:\\Users\\Tom\\OneDrive\\Dokumente\\Lokal\\PoliticsToYou\\src\\Speeches\\speeches_1949_09_12\")\n",
|
177 |
+
"df['date'] = pd.to_datetime(df['date'])\n"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 27,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"def split_documents(df, min_chunk_size=100):\n",
|
187 |
+
" \"\"\"\n",
|
188 |
+
" Load documents from a DataFrame, split them into smaller chunks for vector storage and remove chunks of small size.\n",
|
189 |
+
"\n",
|
190 |
+
" Parameters\n",
|
191 |
+
" ----------\n",
|
192 |
+
" df : pandas.DataFrame\n",
|
193 |
+
" A DataFrame containing the documents to be processed, with a column named 'speech_content'.\n",
|
194 |
+
" min_chunk_size : int, optional\n",
|
195 |
+
" Minimum number of characters a chunk must have to be included in the result. Default is 100.\n",
|
196 |
"\n",
|
197 |
+
" Returns\n",
|
198 |
+
" -------\n",
|
199 |
+
" list\n",
|
200 |
+
" A list of split document chunks ready for further processing or vectorization.\n",
|
201 |
+
" \"\"\"\n",
|
202 |
+
" # Initialize a DataFrameLoader with the given DataFrame and specify the column containing the content to load\n",
|
203 |
+
" loader = DataFrameLoader(data_frame=df, page_content_column='speech_content')\n",
|
204 |
+
" # Load the data from the DataFrame into a suitable format for processing\n",
|
205 |
+
" data = loader.load()\n",
|
206 |
+
" # Initialize a RecursiveCharacterTextSplitter to split the text into chunks\n",
|
207 |
+
" splitter = RecursiveCharacterTextSplitter(\n",
|
208 |
+
" chunk_size=1024,\n",
|
209 |
+
" chunk_overlap=32,\n",
|
210 |
+
" length_function=len,\n",
|
211 |
+
" is_separator_regex=False,\n",
|
212 |
+
" )\n",
|
213 |
+
" # Split the loaded data into smaller chunks using the splitter\n",
|
214 |
+
" documents = splitter.split_documents(documents=data)\n",
|
215 |
+
" # Discard small chunks below the threshold\n",
|
216 |
+
" cleaned_documents = [doc for doc in documents if len(doc.page_content) >= min_chunk_size]\n",
|
217 |
"\n",
|
218 |
+
" return cleaned_documents"
|
|
|
|
|
|
|
219 |
]
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
"metadata": {},
|
225 |
"outputs": [
|
226 |
{
|
227 |
"name": "stderr",
|
228 |
"output_type": "stream",
|
229 |
"text": [
|
|
|
|
|
230 |
"c:\\Python\\Lib\\site-packages\\huggingface_hub\\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
231 |
" warnings.warn(\n"
|
232 |
]
|
|
|
259 |
}
|
260 |
],
|
261 |
"source": [
|
262 |
+
"# Define starting dates of legislature periods\n",
|
263 |
"dates = [\"1953-10-06\", \"1957-10-16\", \"1961-10-17\", \"1965-10-19\", \"1969-10-20\", \"1972-12-13\", \"1976-12-14\", \"1980-11-04\", \"1983-03-29\", \"1987-02-18\",\"1990-12-20\", \"1994-11-10\", \"1998-10-26\", \"2002-10-17\", \"2005-10-18\", \"2009-10-27\", \"2013-10-22\",\"2017-10-24\",\"2021-10-26\", None]\n",
|
264 |
+
"# Load sentence transformer \n",
|
265 |
"embeddings = HuggingFaceEmbeddings(model_name=\"paraphrase-multilingual-MiniLM-L12-v2\")\n",
|
266 |
"\n",
|
267 |
+
"# Create vector store for all speaches\n",
|
268 |
+
"# Split text into documents for vectorstore\n",
|
269 |
+
"documents = split_documents(df)\n",
|
270 |
+
"# Create and save faiss vectorstorage\n",
|
271 |
+
"index_name = 'speeches_1949_09_12'\n",
|
272 |
+
"db = FAISS.from_documents(documents, embeddings)\n",
|
273 |
+
"db.save_local(folder_path=\"FAISS\", index_name=index_name)\n",
|
274 |
+
"print(\"Sucessfully created vector store for all legislature\")\n",
|
275 |
"\n",
|
276 |
+
"# Create vector store for each legislature\n",
|
277 |
+
"# loop parameters\n",
|
278 |
"period = 1\n",
|
279 |
"previous_date = None\n",
|
280 |
+
"\n",
|
281 |
+
"# Iterate over all date to split by legislature getting vector stores for each period\n",
|
282 |
"for date in dates:\n",
|
283 |
" if previous_date is None:\n",
|
284 |
+
" legislature_df = df.loc[df['date'] < datetime.strptime(date, \"%Y-%m-%d\")]\n",
|
285 |
" elif date is None:\n",
|
286 |
+
" legislature_df = df.loc[df['date'] >= datetime.strptime(previous_date, \"%Y-%m-%d\")]\n",
|
287 |
" else:\n",
|
288 |
+
" legislature_df = df.loc[(df['date'] >= datetime.strptime(previous_date, \"%Y-%m-%d\")) & (df['date'] < datetime.strptime(date, \"%Y-%m-%d\"))]\n",
|
289 |
"\n",
|
290 |
" \n",
|
291 |
+
" # Split text into documents for vectorstore\n",
|
292 |
+
" documents = split_documents(legislature_df)\n",
|
293 |
+
"\n",
|
294 |
+
" # Create and save faiss vectorstorage\n",
|
295 |
" index_name = f'{period}_legislature'\n",
|
296 |
" db = FAISS.from_documents(documents, embeddings)\n",
|
297 |
" db.save_local(folder_path=\"FAISS\", index_name=index_name)\n",
|
298 |
" print(f\"Sucessfully created vector store for {period}. legislature\")\n",
|
299 |
+
"\n",
|
300 |
+
" # Change loop parameters for next iteration\n",
|
301 |
" period += 1\n",
|
302 |
" previous_date = date\n",
|
303 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
"\n",
|
305 |
+
" \n"
|
306 |
]
|
307 |
}
|
308 |
],
|
src/Speeches/{querry.ipynb → query.ipynb}
RENAMED
@@ -19,14 +19,14 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {},
|
24 |
"outputs": [
|
25 |
{
|
26 |
"name": "stderr",
|
27 |
"output_type": "stream",
|
28 |
"text": [
|
29 |
-
"C:\\Users\\Tom\\AppData\\Local\\Temp\\
|
30 |
" df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
|
31 |
]
|
32 |
}
|
@@ -38,7 +38,7 @@
|
|
38 |
" \"database\" : \"next\",\n",
|
39 |
" \"user\" : \"postgres\",\n",
|
40 |
" \"password\" : \"postgres\",\n",
|
41 |
-
" \"port\" : \"
|
42 |
"}\n",
|
43 |
"con = psycopg2.connect(**con_details)\n",
|
44 |
"\n",
|
@@ -60,14 +60,14 @@
|
|
60 |
},
|
61 |
{
|
62 |
"cell_type": "code",
|
63 |
-
"execution_count":
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
66 |
{
|
67 |
"name": "stdout",
|
68 |
"output_type": "stream",
|
69 |
"text": [
|
70 |
-
"{'
|
71 |
]
|
72 |
}
|
73 |
],
|
@@ -78,161 +78,7 @@
|
|
78 |
},
|
79 |
{
|
80 |
"cell_type": "code",
|
81 |
-
"execution_count":
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [
|
84 |
-
{
|
85 |
-
"data": {
|
86 |
-
"text/html": [
|
87 |
-
"<div>\n",
|
88 |
-
"<style scoped>\n",
|
89 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
90 |
-
" vertical-align: middle;\n",
|
91 |
-
" }\n",
|
92 |
-
"\n",
|
93 |
-
" .dataframe tbody tr th {\n",
|
94 |
-
" vertical-align: top;\n",
|
95 |
-
" }\n",
|
96 |
-
"\n",
|
97 |
-
" .dataframe thead th {\n",
|
98 |
-
" text-align: right;\n",
|
99 |
-
" }\n",
|
100 |
-
"</style>\n",
|
101 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
102 |
-
" <thead>\n",
|
103 |
-
" <tr style=\"text-align: right;\">\n",
|
104 |
-
" <th></th>\n",
|
105 |
-
" <th>id</th>\n",
|
106 |
-
" <th>speech_content</th>\n",
|
107 |
-
" <th>date</th>\n",
|
108 |
-
" <th>party</th>\n",
|
109 |
-
" </tr>\n",
|
110 |
-
" </thead>\n",
|
111 |
-
" <tbody>\n",
|
112 |
-
" <tr>\n",
|
113 |
-
" <th>126</th>\n",
|
114 |
-
" <td>121</td>\n",
|
115 |
-
" <td>Meine Damen und Herren, die Zentrumsfraktion, ...</td>\n",
|
116 |
-
" <td>1949-09-22</td>\n",
|
117 |
-
" <td>Z</td>\n",
|
118 |
-
" </tr>\n",
|
119 |
-
" <tr>\n",
|
120 |
-
" <th>192</th>\n",
|
121 |
-
" <td>181</td>\n",
|
122 |
-
" <td>Meine Damen und Herren! Der Herr Bundeskanzler...</td>\n",
|
123 |
-
" <td>1949-09-22</td>\n",
|
124 |
-
" <td>Z</td>\n",
|
125 |
-
" </tr>\n",
|
126 |
-
" <tr>\n",
|
127 |
-
" <th>208</th>\n",
|
128 |
-
" <td>196</td>\n",
|
129 |
-
" <td>Die Zentrumsfraktion des Deutschen Bundestags ...</td>\n",
|
130 |
-
" <td>1949-09-27</td>\n",
|
131 |
-
" <td>Z</td>\n",
|
132 |
-
" </tr>\n",
|
133 |
-
" <tr>\n",
|
134 |
-
" <th>210</th>\n",
|
135 |
-
" <td>198</td>\n",
|
136 |
-
" <td>Den Antrag habe ich hier.\\n({0})\\n- Ich begrün...</td>\n",
|
137 |
-
" <td>1949-09-27</td>\n",
|
138 |
-
" <td>Z</td>\n",
|
139 |
-
" </tr>\n",
|
140 |
-
" <tr>\n",
|
141 |
-
" <th>211</th>\n",
|
142 |
-
" <td>199</td>\n",
|
143 |
-
" <td>Ich werde Ihnen, Herr Präsident, also den Antr...</td>\n",
|
144 |
-
" <td>1949-09-27</td>\n",
|
145 |
-
" <td>Z</td>\n",
|
146 |
-
" </tr>\n",
|
147 |
-
" <tr>\n",
|
148 |
-
" <th>...</th>\n",
|
149 |
-
" <td>...</td>\n",
|
150 |
-
" <td>...</td>\n",
|
151 |
-
" <td>...</td>\n",
|
152 |
-
" <td>...</td>\n",
|
153 |
-
" </tr>\n",
|
154 |
-
" <tr>\n",
|
155 |
-
" <th>16480</th>\n",
|
156 |
-
" <td>16412</td>\n",
|
157 |
-
" <td>Meine Damen und Herren! Das, was Herr Kollege ...</td>\n",
|
158 |
-
" <td>1951-12-06</td>\n",
|
159 |
-
" <td>Z</td>\n",
|
160 |
-
" </tr>\n",
|
161 |
-
" <tr>\n",
|
162 |
-
" <th>16558</th>\n",
|
163 |
-
" <td>16496</td>\n",
|
164 |
-
" <td>Herr Präsident! Meine sehr verehrten Damen und...</td>\n",
|
165 |
-
" <td>1951-12-12</td>\n",
|
166 |
-
" <td>Z</td>\n",
|
167 |
-
" </tr>\n",
|
168 |
-
" <tr>\n",
|
169 |
-
" <th>16592</th>\n",
|
170 |
-
" <td>16526</td>\n",
|
171 |
-
" <td>Herr Präsident! Meine Damen und Herren! Der He...</td>\n",
|
172 |
-
" <td>1951-12-12</td>\n",
|
173 |
-
" <td>Z</td>\n",
|
174 |
-
" </tr>\n",
|
175 |
-
" <tr>\n",
|
176 |
-
" <th>16622</th>\n",
|
177 |
-
" <td>16580</td>\n",
|
178 |
-
" <td>Herr Präsident! Meine Herren und Damen! Entgeg...</td>\n",
|
179 |
-
" <td>1951-12-12</td>\n",
|
180 |
-
" <td>Z</td>\n",
|
181 |
-
" </tr>\n",
|
182 |
-
" <tr>\n",
|
183 |
-
" <th>16699</th>\n",
|
184 |
-
" <td>16634</td>\n",
|
185 |
-
" <td>Herr Präsident! Meine Damen und Herren! Die Ze...</td>\n",
|
186 |
-
" <td>1951-12-13</td>\n",
|
187 |
-
" <td>Z</td>\n",
|
188 |
-
" </tr>\n",
|
189 |
-
" </tbody>\n",
|
190 |
-
"</table>\n",
|
191 |
-
"<p>420 rows × 4 columns</p>\n",
|
192 |
-
"</div>"
|
193 |
-
],
|
194 |
-
"text/plain": [
|
195 |
-
" id speech_content date \\\n",
|
196 |
-
"126 121 Meine Damen und Herren, die Zentrumsfraktion, ... 1949-09-22 \n",
|
197 |
-
"192 181 Meine Damen und Herren! Der Herr Bundeskanzler... 1949-09-22 \n",
|
198 |
-
"208 196 Die Zentrumsfraktion des Deutschen Bundestags ... 1949-09-27 \n",
|
199 |
-
"210 198 Den Antrag habe ich hier.\\n({0})\\n- Ich begrün... 1949-09-27 \n",
|
200 |
-
"211 199 Ich werde Ihnen, Herr Präsident, also den Antr... 1949-09-27 \n",
|
201 |
-
"... ... ... ... \n",
|
202 |
-
"16480 16412 Meine Damen und Herren! Das, was Herr Kollege ... 1951-12-06 \n",
|
203 |
-
"16558 16496 Herr Präsident! Meine sehr verehrten Damen und... 1951-12-12 \n",
|
204 |
-
"16592 16526 Herr Präsident! Meine Damen und Herren! Der He... 1951-12-12 \n",
|
205 |
-
"16622 16580 Herr Präsident! Meine Herren und Damen! Entgeg... 1951-12-12 \n",
|
206 |
-
"16699 16634 Herr Präsident! Meine Damen und Herren! Die Ze... 1951-12-13 \n",
|
207 |
-
"\n",
|
208 |
-
" party \n",
|
209 |
-
"126 Z \n",
|
210 |
-
"192 Z \n",
|
211 |
-
"208 Z \n",
|
212 |
-
"210 Z \n",
|
213 |
-
"211 Z \n",
|
214 |
-
"... ... \n",
|
215 |
-
"16480 Z \n",
|
216 |
-
"16558 Z \n",
|
217 |
-
"16592 Z \n",
|
218 |
-
"16622 Z \n",
|
219 |
-
"16699 Z \n",
|
220 |
-
"\n",
|
221 |
-
"[420 rows x 4 columns]"
|
222 |
-
]
|
223 |
-
},
|
224 |
-
"execution_count": 7,
|
225 |
-
"metadata": {},
|
226 |
-
"output_type": "execute_result"
|
227 |
-
}
|
228 |
-
],
|
229 |
-
"source": [
|
230 |
-
"df[df['party'] == 'Z']\n"
|
231 |
-
]
|
232 |
-
},
|
233 |
-
{
|
234 |
-
"cell_type": "code",
|
235 |
-
"execution_count": 4,
|
236 |
"metadata": {},
|
237 |
"outputs": [
|
238 |
{
|
@@ -375,22 +221,24 @@
|
|
375 |
"[930960 rows x 4 columns]"
|
376 |
]
|
377 |
},
|
378 |
-
"execution_count":
|
379 |
"metadata": {},
|
380 |
"output_type": "execute_result"
|
381 |
}
|
382 |
],
|
383 |
"source": [
|
384 |
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
|
|
|
385 |
"df"
|
386 |
]
|
387 |
},
|
388 |
{
|
389 |
"cell_type": "code",
|
390 |
-
"execution_count":
|
391 |
"metadata": {},
|
392 |
"outputs": [],
|
393 |
"source": [
|
|
|
394 |
"df.to_pickle(\"speeches_1949_09_12\")"
|
395 |
]
|
396 |
}
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 13,
|
23 |
"metadata": {},
|
24 |
"outputs": [
|
25 |
{
|
26 |
"name": "stderr",
|
27 |
"output_type": "stream",
|
28 |
"text": [
|
29 |
+
"C:\\Users\\Tom\\AppData\\Local\\Temp\\ipykernel_12368\\2515868855.py:12: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
|
30 |
" df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
|
31 |
]
|
32 |
}
|
|
|
38 |
" \"database\" : \"next\",\n",
|
39 |
" \"user\" : \"postgres\",\n",
|
40 |
" \"password\" : \"postgres\",\n",
|
41 |
+
" \"port\" : \"5433\"\n",
|
42 |
"}\n",
|
43 |
"con = psycopg2.connect(**con_details)\n",
|
44 |
"\n",
|
|
|
60 |
},
|
61 |
{
|
62 |
"cell_type": "code",
|
63 |
+
"execution_count": 14,
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
66 |
{
|
67 |
"name": "stdout",
|
68 |
"output_type": "stream",
|
69 |
"text": [
|
70 |
+
"{'FVP', 'DA', 'FDP', 'BP', 'DP', 'DRP', 'PDS', 'SSW', 'Grüne', 'Fraktionslos', 'WAV', 'Gast', 'FU', 'KPD', 'DIE LINKE.', 'CDU/CSU', 'not found', 'GB/BHE', 'AfD', 'SPD', 'NR', 'Z'}\n"
|
71 |
]
|
72 |
}
|
73 |
],
|
|
|
78 |
},
|
79 |
{
|
80 |
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
"metadata": {},
|
83 |
"outputs": [
|
84 |
{
|
|
|
221 |
"[930960 rows x 4 columns]"
|
222 |
]
|
223 |
},
|
224 |
+
"execution_count": 16,
|
225 |
"metadata": {},
|
226 |
"output_type": "execute_result"
|
227 |
}
|
228 |
],
|
229 |
"source": [
|
230 |
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
|
231 |
+
"df['date'] = pd.to_datetime(df['date'])\n",
|
232 |
"df"
|
233 |
]
|
234 |
},
|
235 |
{
|
236 |
"cell_type": "code",
|
237 |
+
"execution_count": null,
|
238 |
"metadata": {},
|
239 |
"outputs": [],
|
240 |
"source": [
|
241 |
+
"# Dave to pickle\n",
|
242 |
"df.to_pickle(\"speeches_1949_09_12\")"
|
243 |
]
|
244 |
}
|
src/chatbot.py
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
from langchain_core.prompts import ChatPromptTemplate
|
2 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
3 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import pandas as pd
|
7 |
|
8 |
# Load environmental variables from .env-file
|
9 |
-
|
10 |
-
|
11 |
|
12 |
# Define important variables
|
13 |
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2") # Remove embedding input parameter from functions?
|
@@ -56,6 +64,98 @@ prompt_en = ChatPromptTemplate.from_template("""Answer the following question in
|
|
56 |
# Returns the answer in English
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def chatbot(message, history, db_inputs, prompt_language, llm=llm):
|
@@ -109,7 +209,7 @@ def chatbot(message, history, db_inputs, prompt_language, llm=llm):
|
|
109 |
return response
|
110 |
|
111 |
|
112 |
-
def keyword_search(query, n=10, embeddings=embeddings, method=
|
113 |
"""
|
114 |
Retrieve speech contents based on keywords using a specified method.
|
115 |
|
@@ -156,7 +256,7 @@ def keyword_search(query, n=10, embeddings=embeddings, method='ss', party_filter
|
|
156 |
query_embedding = embeddings.embed_query(query)
|
157 |
|
158 |
# Maximal Marginal Relevance
|
159 |
-
if method ==
|
160 |
df_res = pd.DataFrame(columns=['Speech Content', 'Date', 'Party', 'Relevance'])
|
161 |
results = db.max_marginal_relevance_search_with_score_by_vector(query_embedding, k=n)
|
162 |
for doc in results:
|
@@ -173,8 +273,8 @@ def keyword_search(query, n=10, embeddings=embeddings, method='ss', party_filter
|
|
173 |
df_res.sort_values('Relevance', inplace=True, ascending=True)
|
174 |
|
175 |
# Similarity Search
|
176 |
-
|
177 |
-
|
178 |
results = db.similarity_search_by_vector(query_embedding, k=n)
|
179 |
for doc in results:
|
180 |
party = doc.metadata["party"]
|
@@ -182,7 +282,15 @@ def keyword_search(query, n=10, embeddings=embeddings, method='ss', party_filter
|
|
182 |
continue
|
183 |
speech_content = doc.page_content
|
184 |
speech_date = doc.metadata["date"]
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
return df_res
|
|
|
1 |
from langchain_core.prompts import ChatPromptTemplate
|
2 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
3 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
|
6 |
+
|
7 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
|
10 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
11 |
+
from faiss import IndexFlatL2
|
12 |
+
|
13 |
+
#import functools
|
14 |
import pandas as pd
|
15 |
|
16 |
# Load environmental variables from .env-file
|
17 |
+
from dotenv import load_dotenv, find_dotenv
|
18 |
+
load_dotenv(find_dotenv())
|
19 |
|
20 |
# Define important variables
|
21 |
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2") # Remove embedding input parameter from functions?
|
|
|
64 |
# Returns the answer in English
|
65 |
)
|
66 |
|
67 |
+
db_all = FAISS.load_local(folder_path="./src/FAISS", index_name="speeches_1949_09_12",
|
68 |
+
embeddings=embeddings, allow_dangerous_deserialization=True)
|
69 |
+
|
70 |
+
def get_vectorstore(inputs, embeddings):
|
71 |
+
"""
|
72 |
+
Combine multiple FAISS vector stores into a single vector store based on the specified inputs.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
inputs : list of str
|
77 |
+
A list of strings specifying which vector stores to combine. Each string represents a specific
|
78 |
+
index or a special keyword "All". If "All" is the first entry in the list,
|
79 |
+
it directly return the pre-defined vectorstore for all speeches
|
80 |
+
|
81 |
+
embeddings : Embeddings
|
82 |
+
An instance of embeddings that will be used to load the vector stores. The specific type and
|
83 |
+
structure of `embeddings` depend on the implementation of the `get_vectorstore` function.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
FAISS
|
88 |
+
A FAISS vector store that combines the specified indices into a single vector store.
|
89 |
+
|
90 |
+
"""
|
91 |
+
|
92 |
+
# Default folder path
|
93 |
+
folder_path = "./src/FAISS"
|
94 |
+
|
95 |
+
|
96 |
+
if inputs[0] == "All" or inputs[0] is None:
|
97 |
+
return db_all
|
98 |
+
|
99 |
+
# Initialize empty db
|
100 |
+
embedding_function = embeddings
|
101 |
+
dimensions = len(embedding_function.embed_query("dummy"))
|
102 |
+
|
103 |
+
db = FAISS(
|
104 |
+
embedding_function=embedding_function,
|
105 |
+
index=IndexFlatL2(dimensions),
|
106 |
+
docstore=InMemoryDocstore(),
|
107 |
+
index_to_docstore_id={},
|
108 |
+
normalize_L2=False
|
109 |
+
)
|
110 |
+
|
111 |
+
# Retrieve inputs: 20. Legislaturperiode, 19. Legislaturperiode, ...
|
112 |
+
for input in inputs:
|
113 |
+
# Ignore if user also selected All among other legislatures
|
114 |
+
if input == "All":
|
115 |
+
continue
|
116 |
+
# Retrieve selected index and merge vector stores
|
117 |
+
index = input.split(".")[0]
|
118 |
+
index_name = f'{index}_legislature'
|
119 |
+
local_db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
120 |
+
embeddings=embeddings, allow_dangerous_deserialization=True)
|
121 |
+
db.merge_from(local_db)
|
122 |
+
print('Successfully merged inputs')
|
123 |
+
return db
|
124 |
+
|
125 |
+
def RAG(llm, prompt, db, question):
|
126 |
+
"""
|
127 |
+
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
128 |
+
language model using a predefined template.
|
129 |
+
|
130 |
+
Parameters:
|
131 |
+
----------
|
132 |
+
llm : LanguageModel
|
133 |
+
An instance of the language model to be used for generating responses.
|
134 |
+
|
135 |
+
prompt : str
|
136 |
+
A predefined template or prompt that structures how the context and question are presented to the language model.
|
137 |
+
|
138 |
+
db : VectorStore
|
139 |
+
A vector store instance that supports retrieval of relevant documents based on the input question.
|
140 |
+
|
141 |
+
question : str
|
142 |
+
The question or query to be answered by the language model.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
-------
|
146 |
+
str
|
147 |
+
The response generated by the language model, based on the retrieved context and provided question.
|
148 |
+
"""
|
149 |
+
# Create a document chain using the provided language model and prompt template
|
150 |
+
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
151 |
+
# Convert the vector store into a retriever
|
152 |
+
retriever = db.as_retriever()
|
153 |
+
# Create a retrieval chain that integrates the retriever with the document chain
|
154 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
155 |
+
# Invoke the retrieval chain with the input question to get the final response
|
156 |
+
response = retrieval_chain.invoke({"input": question})
|
157 |
+
|
158 |
+
return response
|
159 |
|
160 |
|
161 |
def chatbot(message, history, db_inputs, prompt_language, llm=llm):
|
|
|
209 |
return response
|
210 |
|
211 |
|
212 |
+
def keyword_search(query, n=10, embeddings=embeddings, method="ss", party_filter="All"):
|
213 |
"""
|
214 |
Retrieve speech contents based on keywords using a specified method.
|
215 |
|
|
|
256 |
query_embedding = embeddings.embed_query(query)
|
257 |
|
258 |
# Maximal Marginal Relevance
|
259 |
+
if method == "mmr":
|
260 |
df_res = pd.DataFrame(columns=['Speech Content', 'Date', 'Party', 'Relevance'])
|
261 |
results = db.max_marginal_relevance_search_with_score_by_vector(query_embedding, k=n)
|
262 |
for doc in results:
|
|
|
273 |
df_res.sort_values('Relevance', inplace=True, ascending=True)
|
274 |
|
275 |
# Similarity Search
|
276 |
+
elif method == "ss":
|
277 |
+
kws_data = []
|
278 |
results = db.similarity_search_by_vector(query_embedding, k=n)
|
279 |
for doc in results:
|
280 |
party = doc.metadata["party"]
|
|
|
282 |
continue
|
283 |
speech_content = doc.page_content
|
284 |
speech_date = doc.metadata["date"]
|
285 |
+
speech_date = speech_date.strftime("%Y-%m-%d")
|
286 |
+
print(speech_date)
|
287 |
+
# Error here?
|
288 |
+
kws_entry = {'Speech Content': speech_content,
|
289 |
+
'Date': speech_date,
|
290 |
+
'Party': party}
|
291 |
+
|
292 |
+
kws_data.append(kws_entry)
|
293 |
+
|
294 |
+
df_res = pd.DataFrame(kws_data)
|
295 |
+
|
296 |
return df_res
|
src/vectordatabase.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
from langchain_community.document_loaders import DataFrameLoader
|
2 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
-
from langchain_community.vectorstores import FAISS
|
4 |
-
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
-
from langchain.chains import create_retrieval_chain
|
8 |
-
|
9 |
-
from langchain_community.docstore.in_memory import InMemoryDocstore
|
10 |
-
from faiss import IndexFlatL2
|
11 |
-
|
12 |
-
#import functools
|
13 |
-
|
14 |
-
import pandas as pd
|
15 |
-
import os
|
16 |
-
|
17 |
-
# For local run load environmental variables from .env-file
|
18 |
-
# from dotenv import load_dotenv
|
19 |
-
# load_dotenv()
|
20 |
-
|
21 |
-
# Define important variables
|
22 |
-
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-multilingual-MiniLM-L12-v2")
|
23 |
-
db_all = FAISS.load_local(folder_path="./src/FAISS", index_name="speeches_1949_09_12",
|
24 |
-
embeddings=embeddings, allow_dangerous_deserialization=True)
|
25 |
-
|
26 |
-
def load_documents(df):
|
27 |
-
"""
|
28 |
-
Load documents from a DataFrame and split them into smaller chunks for vector storage.
|
29 |
-
|
30 |
-
Parameters:
|
31 |
-
----------
|
32 |
-
df : pandas.DataFrame
|
33 |
-
A DataFrame containing the documents to be processed, with a column named 'speech_content' that holds the text content.
|
34 |
-
|
35 |
-
Returns:
|
36 |
-
-------
|
37 |
-
list
|
38 |
-
A list of split document chunks ready for further processing or vectorization.
|
39 |
-
"""
|
40 |
-
|
41 |
-
# Initialize a DataFrameLoader with the given DataFrame and specify the column containing the content to load
|
42 |
-
loader = DataFrameLoader(data_frame=df, page_content_column='speech_content')
|
43 |
-
# Load the data from the DataFrame into a suitable format for processing
|
44 |
-
data = loader.load()
|
45 |
-
|
46 |
-
# Initialize a RecursiveCharacterTextSplitter to split the text into chunks
|
47 |
-
splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size=1024,
|
49 |
-
chunk_overlap=32,
|
50 |
-
length_function=len,
|
51 |
-
is_separator_regex=False,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Split the loaded data into smaller chunks using the splitter
|
55 |
-
documents = splitter.split_documents(documents=data)
|
56 |
-
|
57 |
-
return documents
|
58 |
-
|
59 |
-
|
60 |
-
#@functools.lru_cache()
|
61 |
-
def get_vectorstore(inputs, embeddings):
|
62 |
-
"""
|
63 |
-
Combine multiple FAISS vector stores into a single vector store based on the specified inputs.
|
64 |
-
|
65 |
-
Parameters
|
66 |
-
----------
|
67 |
-
inputs : list of str
|
68 |
-
A list of strings specifying which vector stores to combine. Each string represents a specific
|
69 |
-
index or a special keyword "All". If "All" is the first entry in the list,
|
70 |
-
it directly return the pre-defined vectorstore for all speeches
|
71 |
-
|
72 |
-
embeddings : Embeddings
|
73 |
-
An instance of embeddings that will be used to load the vector stores. The specific type and
|
74 |
-
structure of `embeddings` depend on the implementation of the `get_vectorstore` function.
|
75 |
-
|
76 |
-
Returns
|
77 |
-
-------
|
78 |
-
FAISS
|
79 |
-
A FAISS vector store that combines the specified indices into a single vector store.
|
80 |
-
|
81 |
-
"""
|
82 |
-
|
83 |
-
# Default folder path
|
84 |
-
folder_path = "./src/FAISS"
|
85 |
-
|
86 |
-
if inputs[0] == "All" or inputs[0] is None:
|
87 |
-
return db_all
|
88 |
-
|
89 |
-
# Initialize empty db
|
90 |
-
embedding_function = embeddings
|
91 |
-
dimensions = len(embedding_function.embed_query("dummy"))
|
92 |
-
|
93 |
-
db = FAISS(
|
94 |
-
embedding_function=embedding_function,
|
95 |
-
index=IndexFlatL2(dimensions),
|
96 |
-
docstore=InMemoryDocstore(),
|
97 |
-
index_to_docstore_id={},
|
98 |
-
normalize_L2=False
|
99 |
-
)
|
100 |
-
|
101 |
-
# Retrieve inputs: 20. Legislaturperiode, 19. Legislaturperiode, ...
|
102 |
-
for input in inputs:
|
103 |
-
# Ignore if user also selected All among other legislatures
|
104 |
-
if input == "All":
|
105 |
-
continue
|
106 |
-
# Retrieve selected index and merge vector stores
|
107 |
-
index = input.split(".")[0]
|
108 |
-
index_name = f'{index}_legislature'
|
109 |
-
local_db = FAISS.load_local(folder_path=folder_path, index_name=index_name,
|
110 |
-
embeddings=embeddings, allow_dangerous_deserialization=True)
|
111 |
-
db.merge_from(local_db)
|
112 |
-
print('Successfully merged inputs')
|
113 |
-
return db
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
def RAG(llm, prompt, db, question):
|
119 |
-
"""
|
120 |
-
Apply Retrieval-Augmented Generation (RAG) by providing the context and the question to the
|
121 |
-
language model using a predefined template.
|
122 |
-
|
123 |
-
Parameters:
|
124 |
-
----------
|
125 |
-
llm : LanguageModel
|
126 |
-
An instance of the language model to be used for generating responses.
|
127 |
-
|
128 |
-
prompt : str
|
129 |
-
A predefined template or prompt that structures how the context and question are presented to the language model.
|
130 |
-
|
131 |
-
db : VectorStore
|
132 |
-
A vector store instance that supports retrieval of relevant documents based on the input question.
|
133 |
-
|
134 |
-
question : str
|
135 |
-
The question or query to be answered by the language model.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
-------
|
139 |
-
str
|
140 |
-
The response generated by the language model, based on the retrieved context and provided question.
|
141 |
-
"""
|
142 |
-
# Create a document chain using the provided language model and prompt template
|
143 |
-
document_chain = create_stuff_documents_chain(llm=llm, prompt=prompt)
|
144 |
-
# Convert the vector store into a retriever
|
145 |
-
retriever = db.as_retriever()
|
146 |
-
# Create a retrieval chain that integrates the retriever with the document chain
|
147 |
-
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
148 |
-
# Invoke the retrieval chain with the input question to get the final response
|
149 |
-
response = retrieval_chain.invoke({"input": question})
|
150 |
-
|
151 |
-
return response
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|