File size: 7,948 Bytes
f3d0f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import psycopg2\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Pandas\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Tom\\AppData\\Local\\Temp\\ipykernel_21040\\1041354989.py:12: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
      "  df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
     ]
    }
   ],
   "source": [
    "# db_connection -----------------------------------------------------------\n",
    "con_details = {\n",
    "    \"host\"      : \"localhost\",\n",
    "    \"database\"  : \"next\",\n",
    "    \"user\"      : \"postgres\",\n",
    "    \"password\"  : \"postgres\",\n",
    "    \"port\"      : \"5432\"\n",
    "}\n",
    "con = psycopg2.connect(**con_details)\n",
    "\n",
    "# get data tables ---------------------------------------------------------\n",
    "df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
    "                        FROM open_discourse.speeches AS s\n",
    "                        INNER JOIN open_discourse.factions AS f ON\n",
    "                        s.faction_id = f.id;\"\"\", con)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data Cleaning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>speech_content</th>\n",
       "      <th>date</th>\n",
       "      <th>party</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>Meine Damen und Herren! Ich eröffne die 2. Sit...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>Der Bundesrat ist versammelt, Herr Präsident.\\n</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>Ich danke für diese Erklärung. Ich stelle dami...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>Ja, ich habe den Wunsch.\\n</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>Ich erteile dem Herrn Bundespräsidenten das Wo...</td>\n",
       "      <td>1949-09-12</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930955</th>\n",
       "      <td>1084268</td>\n",
       "      <td>\\n\\nWir sind zwar Kollegen.</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930956</th>\n",
       "      <td>1084269</td>\n",
       "      <td>\\n\\nLiebe, sehr geehrte Frau Präsidentin!</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>CDU/CSU</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930957</th>\n",
       "      <td>1084270</td>\n",
       "      <td>\\n\\nVielen Dank.</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930958</th>\n",
       "      <td>1084272</td>\n",
       "      <td>\\n\\nDen Abschluss dieser Aktuellen Stunde bild...</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>not found</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>930959</th>\n",
       "      <td>1084273</td>\n",
       "      <td>\\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...</td>\n",
       "      <td>2022-12-16</td>\n",
       "      <td>SPD</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>930960 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "             id                                     speech_content  \\\n",
       "0             0  Meine Damen und Herren! Ich eröffne die 2. Sit...   \n",
       "1             1    Der Bundesrat ist versammelt, Herr Präsident.\\n   \n",
       "2             2  Ich danke für diese Erklärung. Ich stelle dami...   \n",
       "3             3                         Ja, ich habe den Wunsch.\\n   \n",
       "4             4  Ich erteile dem Herrn Bundespräsidenten das Wo...   \n",
       "...         ...                                                ...   \n",
       "930955  1084268                        \\n\\nWir sind zwar Kollegen.   \n",
       "930956  1084269          \\n\\nLiebe, sehr geehrte Frau Präsidentin!   \n",
       "930957  1084270                                   \\n\\nVielen Dank.   \n",
       "930958  1084272  \\n\\nDen Abschluss dieser Aktuellen Stunde bild...   \n",
       "930959  1084273  \\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...   \n",
       "\n",
       "              date      party  \n",
       "0       1949-09-12  not found  \n",
       "1       1949-09-12  not found  \n",
       "2       1949-09-12  not found  \n",
       "3       1949-09-12  not found  \n",
       "4       1949-09-12  not found  \n",
       "...            ...        ...  \n",
       "930955  2022-12-16  not found  \n",
       "930956  2022-12-16    CDU/CSU  \n",
       "930957  2022-12-16  not found  \n",
       "930958  2022-12-16  not found  \n",
       "930959  2022-12-16        SPD  \n",
       "\n",
       "[930960 rows x 4 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.to_pickle(\"speeches_1949_09_12\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}