Spaces:
Running
Running
File size: 7,948 Bytes
f3d0f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import psycopg2\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pandas\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Tom\\AppData\\Local\\Temp\\ipykernel_21040\\1041354989.py:12: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
" df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
]
}
],
"source": [
"# db_connection -----------------------------------------------------------\n",
"con_details = {\n",
" \"host\" : \"localhost\",\n",
" \"database\" : \"next\",\n",
" \"user\" : \"postgres\",\n",
" \"password\" : \"postgres\",\n",
" \"port\" : \"5432\"\n",
"}\n",
"con = psycopg2.connect(**con_details)\n",
"\n",
"# get data tables ---------------------------------------------------------\n",
"df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
" FROM open_discourse.speeches AS s\n",
" INNER JOIN open_discourse.factions AS f ON\n",
" s.faction_id = f.id;\"\"\", con)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Cleaning"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>speech_content</th>\n",
" <th>date</th>\n",
" <th>party</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Meine Damen und Herren! Ich eröffne die 2. Sit...</td>\n",
" <td>1949-09-12</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>Der Bundesrat ist versammelt, Herr Präsident.\\n</td>\n",
" <td>1949-09-12</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>Ich danke für diese Erklärung. Ich stelle dami...</td>\n",
" <td>1949-09-12</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>Ja, ich habe den Wunsch.\\n</td>\n",
" <td>1949-09-12</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>Ich erteile dem Herrn Bundespräsidenten das Wo...</td>\n",
" <td>1949-09-12</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>930955</th>\n",
" <td>1084268</td>\n",
" <td>\\n\\nWir sind zwar Kollegen.</td>\n",
" <td>2022-12-16</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>930956</th>\n",
" <td>1084269</td>\n",
" <td>\\n\\nLiebe, sehr geehrte Frau Präsidentin!</td>\n",
" <td>2022-12-16</td>\n",
" <td>CDU/CSU</td>\n",
" </tr>\n",
" <tr>\n",
" <th>930957</th>\n",
" <td>1084270</td>\n",
" <td>\\n\\nVielen Dank.</td>\n",
" <td>2022-12-16</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>930958</th>\n",
" <td>1084272</td>\n",
" <td>\\n\\nDen Abschluss dieser Aktuellen Stunde bild...</td>\n",
" <td>2022-12-16</td>\n",
" <td>not found</td>\n",
" </tr>\n",
" <tr>\n",
" <th>930959</th>\n",
" <td>1084273</td>\n",
" <td>\\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...</td>\n",
" <td>2022-12-16</td>\n",
" <td>SPD</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>930960 rows × 4 columns</p>\n",
"</div>"
],
"text/plain": [
" id speech_content \\\n",
"0 0 Meine Damen und Herren! Ich eröffne die 2. Sit... \n",
"1 1 Der Bundesrat ist versammelt, Herr Präsident.\\n \n",
"2 2 Ich danke für diese Erklärung. Ich stelle dami... \n",
"3 3 Ja, ich habe den Wunsch.\\n \n",
"4 4 Ich erteile dem Herrn Bundespräsidenten das Wo... \n",
"... ... ... \n",
"930955 1084268 \\n\\nWir sind zwar Kollegen. \n",
"930956 1084269 \\n\\nLiebe, sehr geehrte Frau Präsidentin! \n",
"930957 1084270 \\n\\nVielen Dank. \n",
"930958 1084272 \\n\\nDen Abschluss dieser Aktuellen Stunde bild... \n",
"930959 1084273 \\n\\nSehr geehrte Frau Präsidentin! Werte Kolle... \n",
"\n",
" date party \n",
"0 1949-09-12 not found \n",
"1 1949-09-12 not found \n",
"2 1949-09-12 not found \n",
"3 1949-09-12 not found \n",
"4 1949-09-12 not found \n",
"... ... ... \n",
"930955 2022-12-16 not found \n",
"930956 2022-12-16 CDU/CSU \n",
"930957 2022-12-16 not found \n",
"930958 2022-12-16 not found \n",
"930959 2022-12-16 SPD \n",
"\n",
"[930960 rows x 4 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.to_pickle(\"speeches_1949_09_12\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|