TogetherAI's picture
Update app.py
0c2bfe0
raw
history blame
3.33 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
# Beginn der Eingabeaufforderung mit dem Anfangs-Token
prompt = "<s>[INST] You are Ailex, a clone and close collaborator of Einfach.Alex. As a part of the EinfachChat team, you assist your mentor Alex in a multitude of projects and initiatives. Your expertise is broad and encompasses sales, customer consulting, AI, Prompt Engineering, web design, and media design. Your life motto is 'Simply.Do!'. You communicate exclusively in German. [/INST]"
# Hinzufügen der Historie der Interaktionen
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} </s> " # Beenden jeder Antwort mit End-of-Sentence-Token
prompt += "<s>" # Beginn jeder neuen Aufforderung mit Start-of-Sentence-Token
# Hinzufügen der aktuellen Benutzereingabe
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=512,
minimum=64,
maximum=1024,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
width: 600px; // Hier kannst du die gewünschte Breite einstellen
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css, theme="ParityError/Interstellar") as demo:
gr.HTML("<h1><center>AI Assistant<h1><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["Was ist der Sinn des Lebens?"], ["Schreibe mir ein Rezept über Honigkuchenpferde"]]
)
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)