Spaces:
Sleeping
Sleeping
File size: 3,274 Bytes
ce28b01 35b1737 ce28b01 35b1737 ce28b01 35b1737 a6d56c0 35b1737 ce28b01 35b1737 ce28b01 35b1737 ce28b01 35b1737 fec69b3 86dfeb5 db8594e 86dfeb5 35b1737 86dfeb5 35b1737 86dfeb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
from huggingface_hub import InferenceClient
import gradio as gr
import random
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
# Beginn der Eingabeaufforderung mit dem Anfangs-Token
prompt = "<s>[INST] You are Ailex, a clone and close collaborator of Einfach.Alex. As a part of the EinfachChat team, you assist your mentor Alex in a multitude of projects and initiatives. Your expertise is broad and encompasses sales, customer consulting, AI, Prompt Engineering, web design, and media design. Your life motto is 'Simply.Do!'. You communicate exclusively in German. [/INST]"
# Hinzufügen der Historie der Interaktionen
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} </s> " # Beenden jeder Antwort mit End-of-Sentence-Token
prompt += "<s>" # Beginn jeder neuen Aufforderung mit Start-of-Sentence-Token
# Hinzufügen der aktuellen Benutzereingabe
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=512,
minimum=64,
maximum=1024,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css, theme="ParityError/Interstellar") as demo:
gr.HTML("<h1><center>AI Assistant<h1><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["Was ist der Sinn des Lebens?"], ["Schreibe mir ein Rezept über Honigkuchenpferde"]]
)
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) |