Spaces:
Running
Running
Create app_multi_In.py
Browse files- app_multi_In.py +43 -0
app_multi_In.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
title = "Transcribe speech several languages"
|
| 6 |
+
|
| 7 |
+
pipelineGE = pipeline(task="automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-german")
|
| 8 |
+
pipelineEN = pipeline(task="automatic-speech-recognition", model="openai/whisper-large")
|
| 9 |
+
|
| 10 |
+
def transcribeFile(audio_path : str) -> str:
|
| 11 |
+
transcription = pipelineGE(audio_path)
|
| 12 |
+
return transcription["text"]
|
| 13 |
+
|
| 14 |
+
def transcribeFileMulti(inputlang, audio_path : str) -> str:
|
| 15 |
+
if inputlang == "English":
|
| 16 |
+
transcription = pipelineEN(audio_path)
|
| 17 |
+
elif inputlang == "German":
|
| 18 |
+
transcription = pipelineGE(audio_path)
|
| 19 |
+
return transcription["text"]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
app1 = gr.Interface(
|
| 24 |
+
fn=transcribeFile,
|
| 25 |
+
inputs=gr.inputs.Audio(label="Upload audio file", type="filepath"),
|
| 26 |
+
outputs="text",
|
| 27 |
+
title=title
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
app2 = gr.Interface(
|
| 32 |
+
fn=transcribeFileMulti,
|
| 33 |
+
inputs=[gr.Radio(["English", "German"], value="German", label="Source Language", info="Select the language of the speech you want to transcribe"),
|
| 34 |
+
gr.Audio(source="microphone", type="filepath")],
|
| 35 |
+
outputs="text",
|
| 36 |
+
title=title
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
demo = gr.TabbedInterface([app1, app2], ["Audio File", "Microphone"])
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
demo.launch()
|