Tlanextli's picture
Update app.py
c3ed104
raw
history blame
1.7 kB
import os
import gradio as gr
import torch
from transformers import pipeline
title = "Transcribe speech several languages"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
asr_pipe_audio2Text_Ge = pipeline(task="automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-german")
asr_pipe_whisper = pipeline(task="automatic-speech-recognition", model="openai/whisper-large", device=device)
#def transcribeFile(audio_path : str) -> str:
# transcription = asr_pipe_audio2Text_Ge(audio_path)
# return transcription["text"]
def translateAudio(audio_path):
translationOutput = asr_pipe_whisper(audio_path, max_new_tokens=256, generate_kwargs={"task":"translate"})
return translationOutput["text"]
def transcribeFileMulti(inputlang, audio_path : str) -> str:
if inputlang == "English":
transcription = asr_pipe_whisper(audio_path)
elif inputlang == "German":
transcription = asr_pipe_audio2Text_Ge(audio_path)
translation = translateAudio(audio_path)
output = transcription + translation
return output #transcription["text"]
app1 = gr.Interface(
fn=transcribeFile,
inputs=gr.inputs.Audio(label="Upload audio file", type="filepath"),
outputs="text",
title=title
)
app2 = gr.Interface(
fn=transcribeFileMulti,
inputs=[gr.Radio(["English", "German"], value="German", label="Source Language", info="Select the language of the speech you want to transcribe"),
gr.Audio(source="microphone", type="filepath")],
outputs="text",
title=title
)
demo = gr.TabbedInterface([app1, app2], ["Audio File", "Microphone"])
if __name__ == "__main__":
demo.launch()