Spaces:
Running
Running
File size: 1,738 Bytes
6b9c021 c3ed104 6b9c021 a4340f7 c27a48e 6b9c021 c27a48e cd94084 6b9c021 a543e48 c27a48e a4340f7 c27a48e a4340f7 c27a48e dc74cbe 5721619 6b9c021 a4340f7 6b9c021 a4340f7 ec5ebbb a4340f7 6b9c021 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
import gradio as gr
import torch
from transformers import pipeline
title = "Transcribe speech several languages"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
asr_pipe_audio2Text_Ge = pipeline(task="automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-german")
asr_pipe_whisper = pipeline(task="automatic-speech-recognition", model="openai/whisper-base", device=device)
def transcribeFile(audio_path : str) -> str:
transcription = asr_pipe_audio2Text_Ge(audio_path)
return transcription["text"]
def translateAudio(audio_path):
translationOutput = asr_pipe_whisper(audio_path, max_new_tokens=256, generate_kwargs={"task":"translate"})
return translationOutput["text"]
def transcribeFileMulti(inputlang, audio_path : str) -> str:
if inputlang == "English":
transcription = asr_pipe_whisper(audio_path)
elif inputlang == "German":
transcription = asr_pipe_audio2Text_Ge(audio_path)
translation = translateAudio(audio_path)
t1 = transcription["text"]
t2 = translation["text"]
output = t1+t2
return output #transcription["text"]
app1 = gr.Interface(
fn=transcribeFile,
inputs=gr.inputs.Audio(label="Upload audio file", type="filepath"),
outputs="text",
title=title
)
app2 = gr.Interface(
fn=transcribeFileMulti,
inputs=[gr.Radio(["English", "German"], value="German", label="Source Language", info="Select the language of the speech you want to transcribe"),
gr.Audio(source="microphone", type="filepath")],
outputs="text",
title=title
)
demo = gr.TabbedInterface([app1, app2], ["Audio File", "Microphone"])
if __name__ == "__main__":
demo.launch()
|