Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,116 +1,215 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from tokenizers import Tokenizer
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import os
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
model_repo = "TimurHromek/HROM-V1"
|
|
|
10 |
|
11 |
-
# 1. Import trainer module components
|
12 |
trainer_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trainer.py")
|
13 |
spec = importlib.util.spec_from_file_location("HROM_Trainer", trainer_file)
|
14 |
trainer_module = importlib.util.module_from_spec(spec)
|
15 |
spec.loader.exec_module(trainer_module)
|
16 |
-
|
17 |
-
CONFIG = trainer_module.CONFIG
|
18 |
-
SafetyManager = trainer_module.SafetyManager
|
19 |
|
20 |
-
# 2. Load tokenizer
|
21 |
tokenizer_file = hf_hub_download(repo_id=model_repo, filename="tokenizer/hrom_tokenizer.json")
|
22 |
tokenizer = Tokenizer.from_file(tokenizer_file)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
safety = SafetyManager(model, tokenizer)
|
37 |
-
max_response_length = 200
|
38 |
-
|
39 |
-
def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200):
|
40 |
-
device = next(model.parameters()).device
|
41 |
-
generated_ids = input_ids.copy()
|
42 |
-
for _ in range(max_length):
|
43 |
-
input_tensor = torch.tensor([generated_ids], device=device)
|
44 |
-
with torch.no_grad():
|
45 |
-
logits = model(input_tensor)
|
46 |
-
next_token = logits.argmax(-1)[:, -1].item()
|
47 |
-
if next_token == tokenizer.token_to_id("</s>"):
|
48 |
-
break
|
49 |
-
current_text = tokenizer.decode(generated_ids + [next_token])
|
50 |
-
if not safety_manager.content_filter(current_text):
|
51 |
-
break
|
52 |
-
generated_ids.append(next_token)
|
53 |
-
return generated_ids[len(input_ids):]
|
54 |
-
|
55 |
-
def process_message(user_input, chat_history, token_history):
|
56 |
-
# Process user input
|
57 |
-
user_turn = f"<user> {user_input} </s>"
|
58 |
-
user_tokens = tokenizer.encode(user_turn).ids
|
59 |
token_history.extend(user_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Truncate if needed
|
65 |
-
max_input_len = CONFIG["max_seq_len"] - max_response_length
|
66 |
-
if len(input_sequence) > max_input_len:
|
67 |
-
input_sequence = input_sequence[-max_input_len:]
|
68 |
-
token_history = input_sequence[1:]
|
69 |
-
|
70 |
-
# Generate response
|
71 |
-
response_ids = generate_response(model, tokenizer, input_sequence, safety, max_response_length)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
except ValueError:
|
82 |
-
assistant_text = tokenizer.decode(response_ids[1:])
|
83 |
-
token_history.extend(response_ids)
|
84 |
else:
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def clear_history():
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
with gr.Blocks() as demo:
|
95 |
-
gr.Markdown("# HROM-V1 Chatbot")
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
msg.submit(
|
101 |
process_message,
|
102 |
-
[msg, chatbot, token_state],
|
103 |
-
[chatbot, token_state],
|
104 |
-
queue=
|
105 |
).then(
|
106 |
-
lambda: "",
|
107 |
)
|
108 |
|
109 |
clear_btn = gr.Button("Clear Chat History")
|
110 |
clear_btn.click(
|
111 |
clear_history,
|
112 |
-
outputs=[chatbot, token_state],
|
113 |
queue=False
|
114 |
)
|
115 |
|
116 |
-
demo.launch()
|
|
|
1 |
+
# app.py (Gradio Client)
|
2 |
import gradio as gr
|
3 |
+
import importlib.util # Still needed for CONFIG for max_seq_len
|
4 |
+
from tokenizers import Tokenizer # Still needed for local tokenization
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import os
|
7 |
+
import requests # For making HTTP requests
|
8 |
+
import json
|
9 |
|
10 |
+
# --- Configuration and Local Tokenizer (Still needed for UI-side processing) ---
|
11 |
model_repo = "TimurHromek/HROM-V1"
|
12 |
+
INFERENCE_SERVER_URL = "http://localhost:5000/generate" # CHANGE THIS to your actual https://inference.stormsurge.xyz/generate
|
13 |
|
14 |
+
# 1. Import trainer module components (ONLY for CONFIG if needed locally)
|
15 |
trainer_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trainer.py")
|
16 |
spec = importlib.util.spec_from_file_location("HROM_Trainer", trainer_file)
|
17 |
trainer_module = importlib.util.module_from_spec(spec)
|
18 |
spec.loader.exec_module(trainer_module)
|
19 |
+
CONFIG = trainer_module.CONFIG # We need CONFIG["max_seq_len"]
|
|
|
|
|
20 |
|
21 |
+
# 2. Load tokenizer (locally for encoding user input)
|
22 |
tokenizer_file = hf_hub_download(repo_id=model_repo, filename="tokenizer/hrom_tokenizer.json")
|
23 |
tokenizer = Tokenizer.from_file(tokenizer_file)
|
24 |
|
25 |
+
max_response_length_config = 200 # Max tokens the *server* should generate for one response
|
26 |
+
|
27 |
+
# Model and SafetyManager are NOT loaded/used on the Gradio client side for generation anymore.
|
28 |
+
|
29 |
+
def process_message(user_input, chat_history, token_history, seed, temperature, top_k):
|
30 |
+
if not user_input.strip():
|
31 |
+
chat_history.append((user_input, "Please provide some input."))
|
32 |
+
return chat_history, token_history, seed, temperature, top_k # Pass back params
|
33 |
+
|
34 |
+
# 1. Process user input and update token_history
|
35 |
+
user_turn_text = f"<user> {user_input} </s>"
|
36 |
+
user_tokens = tokenizer.encode(user_turn_text).ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
token_history.extend(user_tokens)
|
38 |
+
|
39 |
+
# 2. Add assistant marker to token_history for the server to start generating after it
|
40 |
+
assistant_start_token = tokenizer.token_to_id("<assistant>")
|
41 |
+
token_history.append(assistant_start_token)
|
42 |
+
|
43 |
+
# 3. Prepare input sequence for the server (truncation)
|
44 |
+
# The server expects the full context it needs to start generating the assistant's reply.
|
45 |
+
# The max_response_length_config is for the *output*, so the input can be
|
46 |
+
# max_seq_len - max_response_length_config.
|
47 |
+
# The token_history already includes <s> from previous turns or initial state.
|
48 |
|
49 |
+
current_input_for_server = token_history.copy()
|
50 |
+
max_input_len_for_server = CONFIG["max_seq_len"] - max_response_length_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
if len(current_input_for_server) > max_input_len_for_server:
|
53 |
+
# If too long, truncate from the beginning, but ensure <s> is kept if present
|
54 |
+
# More robust: find first <s> after initial part if truncating heavily.
|
55 |
+
# Simple truncation for now:
|
56 |
+
num_tokens_to_remove = len(current_input_for_server) - max_input_len_for_server
|
57 |
+
# Keep <s> if it's the first token
|
58 |
+
if current_input_for_server and current_input_for_server[0] == tokenizer.token_to_id("<s>"):
|
59 |
+
current_input_for_server = [tokenizer.token_to_id("<s>")] + current_input_for_server[1+num_tokens_to_remove:]
|
|
|
|
|
|
|
60 |
else:
|
61 |
+
current_input_for_server = current_input_for_server[num_tokens_to_remove:]
|
62 |
+
|
63 |
+
# Update token_history to reflect the truncated version sent to server
|
64 |
+
# This is important so the client's token_history matches what the server 'sees' as context
|
65 |
+
token_history = current_input_for_server.copy()
|
66 |
+
|
67 |
+
|
68 |
+
# 4. Call the inference server
|
69 |
+
payload = {
|
70 |
+
"token_history": current_input_for_server, # This now includes <s>...<user>...</s><assistant>
|
71 |
+
"max_response_length": max_response_length_config,
|
72 |
+
"temperature": temperature,
|
73 |
+
"top_k": top_k,
|
74 |
+
"seed": seed if seed > 0 else None # Send None if seed is 0 or negative (for random)
|
75 |
+
}
|
76 |
+
|
77 |
+
assistant_response_text = ""
|
78 |
+
assistant_response_token_ids = [] # Store IDs of the assistant's response
|
79 |
+
chat_history.append((user_input, "")) # Add user message, prepare for streaming assistant
|
80 |
+
|
81 |
+
try:
|
82 |
+
with requests.post(INFERENCE_SERVER_URL, json=payload, stream=True, timeout=120) as r:
|
83 |
+
r.raise_for_status() # Raise an exception for HTTP errors
|
84 |
+
for line in r.iter_lines():
|
85 |
+
if line:
|
86 |
+
decoded_line = line.decode('utf-8')
|
87 |
+
if decoded_line.startswith('data: '):
|
88 |
+
try:
|
89 |
+
event_data_json = decoded_line[len('data: '):]
|
90 |
+
event_data = json.loads(event_data_json)
|
91 |
+
|
92 |
+
if event_data.get("type") == "token":
|
93 |
+
token_text = event_data.get("text", "")
|
94 |
+
token_id = event_data.get("token_id")
|
95 |
+
assistant_response_text += token_text
|
96 |
+
if token_id is not None:
|
97 |
+
assistant_response_token_ids.append(token_id)
|
98 |
+
chat_history[-1] = (user_input, assistant_response_text)
|
99 |
+
yield chat_history, token_history, seed, temperature, top_k # Update UI progressively
|
100 |
+
|
101 |
+
elif event_data.get("type") == "eos":
|
102 |
+
# End of sentence token received
|
103 |
+
eos_token_id = event_data.get("token_id")
|
104 |
+
if eos_token_id is not None:
|
105 |
+
assistant_response_token_ids.append(eos_token_id)
|
106 |
+
# The server should have sent </s>. We add it to token history.
|
107 |
+
break # Stop processing more tokens for this response
|
108 |
+
|
109 |
+
elif event_data.get("type") == "stop":
|
110 |
+
reason = event_data.get("reason", "unknown reason")
|
111 |
+
assistant_response_text += f"\n[Generation stopped: {reason}]"
|
112 |
+
chat_history[-1] = (user_input, assistant_response_text)
|
113 |
+
yield chat_history, token_history, seed, temperature, top_k
|
114 |
+
break
|
115 |
+
|
116 |
+
elif event_data.get("type") == "stream_end":
|
117 |
+
# Server explicitly signals end of stream
|
118 |
+
break
|
119 |
+
|
120 |
+
elif event_data.get("type") == "error":
|
121 |
+
err_msg = event_data.get("message", "Unknown server error")
|
122 |
+
assistant_response_text += f"\n[Server Error: {err_msg}]"
|
123 |
+
chat_history[-1] = (user_input, assistant_response_text)
|
124 |
+
yield chat_history, token_history, seed, temperature, top_k
|
125 |
+
break
|
126 |
+
|
127 |
+
except json.JSONDecodeError:
|
128 |
+
print(f"Failed to parse JSON: {decoded_line}")
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error processing stream line: {e}")
|
131 |
+
assistant_response_text += f"\n[Client Error: {e}]"
|
132 |
+
chat_history[-1] = (user_input, assistant_response_text)
|
133 |
+
yield chat_history, token_history, seed, temperature, top_k
|
134 |
+
break # Stop on error
|
135 |
+
|
136 |
+
except requests.exceptions.RequestException as e:
|
137 |
+
assistant_response_text = f"Error connecting to inference server: {e}"
|
138 |
+
chat_history[-1] = (user_input, assistant_response_text)
|
139 |
+
# No new tokens to add to token_history from assistant
|
140 |
+
yield chat_history, token_history, seed, temperature, top_k
|
141 |
+
return # Exit the generator
|
142 |
+
|
143 |
+
# After stream is complete (or broken):
|
144 |
+
# Update the main token_history with the assistant's generated tokens
|
145 |
+
# The assistant_start_token was already added before calling the server.
|
146 |
+
# The assistant_response_token_ids are the tokens *after* <assistant>.
|
147 |
+
token_history.extend(assistant_response_token_ids)
|
148 |
+
|
149 |
+
# Ensure </s> is at the end of the assistant's part in token_history if not already
|
150 |
+
# (The server stream should ideally send eos_token_id for this)
|
151 |
+
if not assistant_response_token_ids or assistant_response_token_ids[-1] != tokenizer.token_to_id("</s>"):
|
152 |
+
if event_data.get("type") != "eos": # if it wasn't already an EOS event that added it
|
153 |
+
token_history.append(tokenizer.token_to_id("</s>"))
|
154 |
+
|
155 |
+
|
156 |
+
# Final update after generation is fully done
|
157 |
+
if not assistant_response_text.strip(): # If nothing was generated
|
158 |
+
chat_history[-1] = (user_input, "I couldn't generate a proper response.")
|
159 |
|
160 |
+
# Update seed for next turn if it was used (randomize if seed was > 0)
|
161 |
+
# If seed was <=0, it means use random, so keep it that way.
|
162 |
+
if seed > 0:
|
163 |
+
new_seed = seed + 1 # Or any other logic to change the seed for next turn
|
164 |
+
else:
|
165 |
+
new_seed = seed # Keep as random
|
166 |
+
|
167 |
+
yield chat_history, token_history, new_seed, temperature, top_k
|
168 |
+
|
169 |
|
170 |
def clear_history():
|
171 |
+
# Initial token_history should start with <s>
|
172 |
+
initial_token_history = [tokenizer.token_to_id("<s>")]
|
173 |
+
return [], initial_token_history, -1, 0.7, 50 # Cleared history, initial tokens, default seed/temp/top_k
|
174 |
+
|
175 |
|
176 |
with gr.Blocks() as demo:
|
177 |
+
gr.Markdown("# HROM-V1 Chatbot (Remote Inference)")
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
with gr.Column(scale=1):
|
181 |
+
seed_slider = gr.Slider(minimum=-1, maximum=99999, value=-1, step=1, label="Seed (-1 for random)")
|
182 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
|
183 |
+
top_k_slider = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K (0 for no Top-K)")
|
184 |
+
with gr.Column(scale=3):
|
185 |
+
chatbot = gr.Chatbot(height=500, label="Chat")
|
186 |
+
msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
187 |
+
|
188 |
+
# token_state stores the *entire conversation history as token IDs*
|
189 |
+
# It should be initialized with the <s> token.
|
190 |
+
initial_tokens = [tokenizer.token_to_id("<s>")]
|
191 |
+
token_state = gr.State(initial_tokens)
|
192 |
|
193 |
+
# Parameters for generation
|
194 |
+
# seed_state = gr.State(-1) # -1 for random
|
195 |
+
# temp_state = gr.State(0.7)
|
196 |
+
# top_k_state = gr.State(50) # 0 to disable
|
197 |
+
|
198 |
+
# Chain actions: submit text -> process_message (yields updates) -> clear textbox
|
199 |
msg.submit(
|
200 |
process_message,
|
201 |
+
[msg, chatbot, token_state, seed_slider, temp_slider, top_k_slider],
|
202 |
+
[chatbot, token_state, seed_slider, temp_slider, top_k_slider], # Pass params back to update state if needed
|
203 |
+
queue=True # Enable queue for streaming
|
204 |
).then(
|
205 |
+
lambda: "", outputs=msg # Clear textbox
|
206 |
)
|
207 |
|
208 |
clear_btn = gr.Button("Clear Chat History")
|
209 |
clear_btn.click(
|
210 |
clear_history,
|
211 |
+
outputs=[chatbot, token_state, seed_slider, temp_slider, top_k_slider],
|
212 |
queue=False
|
213 |
)
|
214 |
|
215 |
+
demo.queue().launch(debug=True) # .queue() is important for streaming updates
|