# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import numpy as np from mmengine.structures import InstanceData from torch import Tensor from mmdet.registry import MODELS, TASK_UTILS from mmdet.structures import TrackSampleList from mmdet.utils import OptConfigType from .deep_sort import DeepSORT @MODELS.register_module() class StrongSORT(DeepSORT): """StrongSORT: Make DeepSORT Great Again. Details can be found at `StrongSORT`_. Args: detector (dict): Configuration of detector. Defaults to None. reid (dict): Configuration of reid. Defaults to None tracker (dict): Configuration of tracker. Defaults to None. kalman (dict): Configuration of Kalman filter. Defaults to None. cmc (dict): Configuration of camera model compensation. Defaults to None. data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`TrackDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. init_cfg (dict or list[dict]): Configuration of initialization. Defaults to None. """ def __init__(self, detector: Optional[dict] = None, reid: Optional[dict] = None, cmc: Optional[dict] = None, tracker: Optional[dict] = None, postprocess_model: Optional[dict] = None, data_preprocessor: OptConfigType = None, init_cfg: OptConfigType = None): super().__init__(detector, reid, tracker, data_preprocessor, init_cfg) if cmc is not None: self.cmc = TASK_UTILS.build(cmc) if postprocess_model is not None: self.postprocess_model = TASK_UTILS.build(postprocess_model) @property def with_cmc(self): """bool: whether the framework has a camera model compensation model. """ return hasattr(self, 'cmc') and self.cmc is not None def predict(self, inputs: Tensor, data_samples: TrackSampleList, rescale: bool = True, **kwargs) -> TrackSampleList: """Predict results from a video and data samples with post- processing. Args: inputs (Tensor): of shape (N, T, C, H, W) encoding input images. The N denotes batch size. The T denotes the number of key frames and reference frames. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `gt_instance`. rescale (bool, Optional): If False, then returned bboxes and masks will fit the scale of img, otherwise, returned bboxes and masks will fit the scale of original image shape. Defaults to True. Returns: TrackSampleList: List[TrackDataSample] Tracking results of the input videos. Each DetDataSample usually contains ``pred_track_instances``. """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' assert inputs.size(0) == 1, \ 'SORT/DeepSORT inference only support ' \ '1 batch size per gpu for now.' assert len(data_samples) == 1, \ 'SORT/DeepSORT inference only support ' \ '1 batch size per gpu for now.' track_data_sample = data_samples[0] video_len = len(track_data_sample) video_track_instances = [] for frame_id in range(video_len): img_data_sample = track_data_sample[frame_id] single_img = inputs[:, frame_id].contiguous() # det_results List[DetDataSample] det_results = self.detector.predict(single_img, [img_data_sample]) assert len(det_results) == 1, 'Batch inference is not supported.' pred_track_instances = self.tracker.track( model=self, img=single_img, data_sample=det_results[0], data_preprocessor=self.preprocess_cfg, rescale=rescale, **kwargs) for i in range(len(pred_track_instances.instances_id)): video_track_instances.append( np.array([ frame_id + 1, pred_track_instances.instances_id[i].cpu(), pred_track_instances.bboxes[i][0].cpu(), pred_track_instances.bboxes[i][1].cpu(), (pred_track_instances.bboxes[i][2] - pred_track_instances.bboxes[i][0]).cpu(), (pred_track_instances.bboxes[i][3] - pred_track_instances.bboxes[i][1]).cpu(), pred_track_instances.scores[i].cpu() ])) video_track_instances = np.array(video_track_instances).reshape(-1, 7) video_track_instances = self.postprocess_model.forward( video_track_instances) for frame_id in range(video_len): track_data_sample[frame_id].pred_track_instances = \ InstanceData(bboxes=video_track_instances[ video_track_instances[:, 0] == frame_id + 1, :]) return [track_data_sample]