# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. dataset_type = 'DSDLDetDataset' data_root = 'path to dataset folder' train_ann = 'path to train yaml file' val_ann = 'path to val yaml file' backend_args = None # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': "s3://open_data/", # 'data/': "s3://open_data/" # })) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file=train_ann, filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file=val_ann, test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict(type='CocoMetric', metric='bbox') # val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator