# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # data settings dataset_type = 'CocoCaptionDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None test_pipeline = [ dict( type='LoadImageFromFile', imdecode_backend='pillow', backend_args=backend_args), dict( type='Resize', scale=(224, 224), interpolation='bicubic', backend='pillow'), dict(type='PackInputs', meta_keys=['image_id']), ] # ann_file download from # train dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json # noqa # val dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json # noqa # test dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json # noqa # val evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json # noqa # test evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json # noqa val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/coco_karpathy_val.json', pipeline=test_pipeline, )) val_evaluator = dict( type='COCOCaptionMetric', ann_file=data_root + 'annotations/coco_karpathy_val_gt.json', ) # # If you want standard test, please manually configure the test dataset test_dataloader = val_dataloader test_evaluator = val_evaluator