rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Tuple
import torch
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.task_modules.samplers import PseudoSampler
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList, OptConfigType
from ..utils.misc import empty_instances, unpack_gt_instances
from .cascade_roi_head import CascadeRoIHead
@MODELS.register_module()
class SparseRoIHead(CascadeRoIHead):
r"""The RoIHead for `Sparse R-CNN: End-to-End Object Detection with
Learnable Proposals <https://arxiv.org/abs/2011.12450>`_
and `Instances as Queries <http://arxiv.org/abs/2105.01928>`_
Args:
num_stages (int): Number of stage whole iterative process.
Defaults to 6.
stage_loss_weights (Tuple[float]): The loss
weight of each stage. By default all stages have
the same weight 1.
bbox_roi_extractor (:obj:`ConfigDict` or dict): Config of box
roi extractor.
mask_roi_extractor (:obj:`ConfigDict` or dict): Config of mask
roi extractor.
bbox_head (:obj:`ConfigDict` or dict): Config of box head.
mask_head (:obj:`ConfigDict` or dict): Config of mask head.
train_cfg (:obj:`ConfigDict` or dict, Optional): Configuration
information in train stage. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, Optional): Configuration
information in test stage. Defaults to None.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict. Defaults to None.
"""
def __init__(self,
num_stages: int = 6,
stage_loss_weights: Tuple[float] = (1, 1, 1, 1, 1, 1),
proposal_feature_channel: int = 256,
bbox_roi_extractor: ConfigType = dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_roi_extractor: OptConfigType = None,
bbox_head: ConfigType = dict(
type='DIIHead',
num_classes=80,
num_fcs=2,
num_heads=8,
num_cls_fcs=1,
num_reg_fcs=3,
feedforward_channels=2048,
hidden_channels=256,
dropout=0.0,
roi_feat_size=7,
ffn_act_cfg=dict(type='ReLU', inplace=True)),
mask_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptConfigType = None) -> None:
assert bbox_roi_extractor is not None
assert bbox_head is not None
assert len(stage_loss_weights) == num_stages
self.num_stages = num_stages
self.stage_loss_weights = stage_loss_weights
self.proposal_feature_channel = proposal_feature_channel
super().__init__(
num_stages=num_stages,
stage_loss_weights=stage_loss_weights,
bbox_roi_extractor=bbox_roi_extractor,
mask_roi_extractor=mask_roi_extractor,
bbox_head=bbox_head,
mask_head=mask_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
# train_cfg would be None when run the test.py
if train_cfg is not None:
for stage in range(num_stages):
assert isinstance(self.bbox_sampler[stage], PseudoSampler), \
'Sparse R-CNN and QueryInst only support `PseudoSampler`'
def bbox_loss(self, stage: int, x: Tuple[Tensor],
results_list: InstanceList, object_feats: Tensor,
batch_img_metas: List[dict],
batch_gt_instances: InstanceList) -> dict:
"""Perform forward propagation and loss calculation of the bbox head on
the features of the upstream network.
Args:
stage (int): The current stage in iterative process.
x (tuple[Tensor]): List of multi-level img features.
results_list (List[:obj:`InstanceData`]) : List of region
proposals.
object_feats (Tensor): The object feature extracted from
the previous stage.
batch_img_metas (list[dict]): Meta information of each image.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
"""
proposal_list = [res.bboxes for res in results_list]
rois = bbox2roi(proposal_list)
bbox_results = self._bbox_forward(stage, x, rois, object_feats,
batch_img_metas)
imgs_whwh = torch.cat(
[res.imgs_whwh[None, ...] for res in results_list])
cls_pred_list = bbox_results['detached_cls_scores']
proposal_list = bbox_results['detached_proposals']
sampling_results = []
bbox_head = self.bbox_head[stage]
for i in range(len(batch_img_metas)):
pred_instances = InstanceData()
# TODO: Enhance the logic
pred_instances.bboxes = proposal_list[i] # for assinger
pred_instances.scores = cls_pred_list[i]
pred_instances.priors = proposal_list[i] # for sampler
assign_result = self.bbox_assigner[stage].assign(
pred_instances=pred_instances,
gt_instances=batch_gt_instances[i],
gt_instances_ignore=None,
img_meta=batch_img_metas[i])
sampling_result = self.bbox_sampler[stage].sample(
assign_result, pred_instances, batch_gt_instances[i])
sampling_results.append(sampling_result)
bbox_results.update(sampling_results=sampling_results)
cls_score = bbox_results['cls_score']
decoded_bboxes = bbox_results['decoded_bboxes']
cls_score = cls_score.view(-1, cls_score.size(-1))
decoded_bboxes = decoded_bboxes.view(-1, 4)
bbox_loss_and_target = bbox_head.loss_and_target(
cls_score,
decoded_bboxes,
sampling_results,
self.train_cfg[stage],
imgs_whwh=imgs_whwh,
concat=True)
bbox_results.update(bbox_loss_and_target)
# propose for the new proposal_list
proposal_list = []
for idx in range(len(batch_img_metas)):
results = InstanceData()
results.imgs_whwh = results_list[idx].imgs_whwh
results.bboxes = bbox_results['detached_proposals'][idx]
proposal_list.append(results)
bbox_results.update(results_list=proposal_list)
return bbox_results
def _bbox_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor,
object_feats: Tensor,
batch_img_metas: List[dict]) -> dict:
"""Box head forward function used in both training and testing. Returns
all regression, classification results and a intermediate feature.
Args:
stage (int): The current stage in iterative process.
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Each dimension means (img_index, x1, y1, x2, y2).
object_feats (Tensor): The object feature extracted from
the previous stage.
batch_img_metas (list[dict]): Meta information of each image.
Returns:
dict[str, Tensor]: a dictionary of bbox head outputs,
Containing the following results:
- cls_score (Tensor): The score of each class, has
shape (batch_size, num_proposals, num_classes)
when use focal loss or
(batch_size, num_proposals, num_classes+1)
otherwise.
- decoded_bboxes (Tensor): The regression results
with shape (batch_size, num_proposal, 4).
The last dimension 4 represents
[tl_x, tl_y, br_x, br_y].
- object_feats (Tensor): The object feature extracted
from current stage
- detached_cls_scores (list[Tensor]): The detached
classification results, length is batch_size, and
each tensor has shape (num_proposal, num_classes).
- detached_proposals (list[tensor]): The detached
regression results, length is batch_size, and each
tensor has shape (num_proposal, 4). The last
dimension 4 represents [tl_x, tl_y, br_x, br_y].
"""
num_imgs = len(batch_img_metas)
bbox_roi_extractor = self.bbox_roi_extractor[stage]
bbox_head = self.bbox_head[stage]
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
rois)
cls_score, bbox_pred, object_feats, attn_feats = bbox_head(
bbox_feats, object_feats)
fake_bbox_results = dict(
rois=rois,
bbox_targets=(rois.new_zeros(len(rois), dtype=torch.long), None),
bbox_pred=bbox_pred.view(-1, bbox_pred.size(-1)),
cls_score=cls_score.view(-1, cls_score.size(-1)))
fake_sampling_results = [
InstanceData(pos_is_gt=rois.new_zeros(object_feats.size(1)))
for _ in range(len(batch_img_metas))
]
results_list = bbox_head.refine_bboxes(
sampling_results=fake_sampling_results,
bbox_results=fake_bbox_results,
batch_img_metas=batch_img_metas)
proposal_list = [res.bboxes for res in results_list]
bbox_results = dict(
cls_score=cls_score,
decoded_bboxes=torch.cat(proposal_list),
object_feats=object_feats,
attn_feats=attn_feats,
# detach then use it in label assign
detached_cls_scores=[
cls_score[i].detach() for i in range(num_imgs)
],
detached_proposals=[item.detach() for item in proposal_list])
return bbox_results
def _mask_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor,
attn_feats) -> dict:
"""Mask head forward function used in both training and testing.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
attn_feats (Tensot): Intermediate feature get from the last
diihead, has shape
(batch_size*num_proposals, feature_dimensions)
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
"""
mask_roi_extractor = self.mask_roi_extractor[stage]
mask_head = self.mask_head[stage]
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
rois)
# do not support caffe_c4 model anymore
mask_preds = mask_head(mask_feats, attn_feats)
mask_results = dict(mask_preds=mask_preds)
return mask_results
def mask_loss(self, stage: int, x: Tuple[Tensor], bbox_results: dict,
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Run forward function and calculate loss for mask head in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
bbox_results (dict): Results obtained from `bbox_loss`.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `loss_mask` (dict): A dictionary of mask loss components.
"""
attn_feats = bbox_results['attn_feats']
sampling_results = bbox_results['sampling_results']
pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
attn_feats = torch.cat([
feats[res.pos_inds]
for (feats, res) in zip(attn_feats, sampling_results)
])
mask_results = self._mask_forward(stage, x, pos_rois, attn_feats)
mask_loss_and_target = self.mask_head[stage].loss_and_target(
mask_preds=mask_results['mask_preds'],
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=rcnn_train_cfg)
mask_results.update(mask_loss_and_target)
return mask_results
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (List[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict: a dictionary of loss components of all stage.
"""
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= outputs
object_feats = torch.cat(
[res.pop('features')[None, ...] for res in rpn_results_list])
results_list = rpn_results_list
losses = {}
for stage in range(self.num_stages):
stage_loss_weight = self.stage_loss_weights[stage]
# bbox head forward and loss
bbox_results = self.bbox_loss(
stage=stage,
x=x,
object_feats=object_feats,
results_list=results_list,
batch_img_metas=batch_img_metas,
batch_gt_instances=batch_gt_instances)
for name, value in bbox_results['loss_bbox'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
if self.with_mask:
mask_results = self.mask_loss(
stage=stage,
x=x,
bbox_results=bbox_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=self.train_cfg[stage])
for name, value in mask_results['loss_mask'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
object_feats = bbox_results['object_feats']
results_list = bbox_results['results_list']
return losses
def predict_bbox(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
rpn_results_list: InstanceList,
rcnn_test_cfg: ConfigType,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.
Args:
x(tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
proposal_list = [res.bboxes for res in rpn_results_list]
object_feats = torch.cat(
[res.pop('features')[None, ...] for res in rpn_results_list])
if all([proposal.shape[0] == 0 for proposal in proposal_list]):
# There is no proposal in the whole batch
return empty_instances(
batch_img_metas, x[0].device, task_type='bbox')
for stage in range(self.num_stages):
rois = bbox2roi(proposal_list)
bbox_results = self._bbox_forward(stage, x, rois, object_feats,
batch_img_metas)
object_feats = bbox_results['object_feats']
cls_score = bbox_results['cls_score']
proposal_list = bbox_results['detached_proposals']
num_classes = self.bbox_head[-1].num_classes
if self.bbox_head[-1].loss_cls.use_sigmoid:
cls_score = cls_score.sigmoid()
else:
cls_score = cls_score.softmax(-1)[..., :-1]
topk_inds_list = []
results_list = []
for img_id in range(len(batch_img_metas)):
cls_score_per_img = cls_score[img_id]
scores_per_img, topk_inds = cls_score_per_img.flatten(0, 1).topk(
self.test_cfg.max_per_img, sorted=False)
labels_per_img = topk_inds % num_classes
bboxes_per_img = proposal_list[img_id][topk_inds // num_classes]
topk_inds_list.append(topk_inds)
if rescale and bboxes_per_img.size(0) > 0:
assert batch_img_metas[img_id].get('scale_factor') is not None
scale_factor = bboxes_per_img.new_tensor(
batch_img_metas[img_id]['scale_factor']).repeat((1, 2))
bboxes_per_img = (
bboxes_per_img.view(bboxes_per_img.size(0), -1, 4) /
scale_factor).view(bboxes_per_img.size()[0], -1)
results = InstanceData()
results.bboxes = bboxes_per_img
results.scores = scores_per_img
results.labels = labels_per_img
results_list.append(results)
if self.with_mask:
for img_id in range(len(batch_img_metas)):
# add positive information in InstanceData to predict
# mask results in `mask_head`.
proposals = bbox_results['detached_proposals'][img_id]
topk_inds = topk_inds_list[img_id]
attn_feats = bbox_results['attn_feats'][img_id]
results_list[img_id].proposals = proposals
results_list[img_id].topk_inds = topk_inds
results_list[img_id].attn_feats = attn_feats
return results_list
def predict_mask(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
results_list: InstanceList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the mask head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
results_list (list[:obj:`InstanceData`]): Detection results of
each image. Each item usually contains following keys:
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- proposal (Tensor): Bboxes predicted from bbox_head,
has a shape (num_instances, 4).
- topk_inds (Tensor): Topk indices of each image, has
shape (num_instances, )
- attn_feats (Tensor): Intermediate feature get from the last
diihead, has shape (num_instances, feature_dimensions)
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
proposal_list = [res.pop('proposals') for res in results_list]
topk_inds_list = [res.pop('topk_inds') for res in results_list]
attn_feats = torch.cat(
[res.pop('attn_feats')[None, ...] for res in results_list])
rois = bbox2roi(proposal_list)
if rois.shape[0] == 0:
results_list = empty_instances(
batch_img_metas,
rois.device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=self.test_cfg.mask_thr_binary)
return results_list
last_stage = self.num_stages - 1
mask_results = self._mask_forward(last_stage, x, rois, attn_feats)
num_imgs = len(batch_img_metas)
mask_results['mask_preds'] = mask_results['mask_preds'].reshape(
num_imgs, -1, *mask_results['mask_preds'].size()[1:])
num_classes = self.bbox_head[-1].num_classes
mask_preds = []
for img_id in range(num_imgs):
topk_inds = topk_inds_list[img_id]
masks_per_img = mask_results['mask_preds'][img_id].flatten(
0, 1)[topk_inds]
masks_per_img = masks_per_img[:, None,
...].repeat(1, num_classes, 1, 1)
mask_preds.append(masks_per_img)
results_list = self.mask_head[-1].predict_by_feat(
mask_preds,
results_list,
batch_img_metas,
rcnn_test_cfg=self.test_cfg,
rescale=rescale)
return results_list
# TODO: Need to refactor later
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> tuple:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
x (List[Tensor]): Multi-level features that may have different
resolutions.
rpn_results_list (List[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns
tuple: A tuple of features from ``bbox_head`` and ``mask_head``
forward.
"""
outputs = unpack_gt_instances(batch_data_samples)
(batch_gt_instances, batch_gt_instances_ignore,
batch_img_metas) = outputs
all_stage_bbox_results = []
object_feats = torch.cat(
[res.pop('features')[None, ...] for res in rpn_results_list])
results_list = rpn_results_list
if self.with_bbox:
for stage in range(self.num_stages):
bbox_results = self.bbox_loss(
stage=stage,
x=x,
results_list=results_list,
object_feats=object_feats,
batch_img_metas=batch_img_metas,
batch_gt_instances=batch_gt_instances)
bbox_results.pop('loss_bbox')
# torch.jit does not support obj:SamplingResult
bbox_results.pop('results_list')
bbox_res = bbox_results.copy()
bbox_res.pop('sampling_results')
all_stage_bbox_results.append((bbox_res, ))
if self.with_mask:
attn_feats = bbox_results['attn_feats']
sampling_results = bbox_results['sampling_results']
pos_rois = bbox2roi(
[res.pos_priors for res in sampling_results])
attn_feats = torch.cat([
feats[res.pos_inds]
for (feats, res) in zip(attn_feats, sampling_results)
])
mask_results = self._mask_forward(stage, x, pos_rois,
attn_feats)
all_stage_bbox_results[-1] += (mask_results, )
return tuple(all_stage_bbox_results)