rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Union
import torch
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import TrackSampleList
from mmdet.utils import OptConfigType, OptMultiConfig
from .base import BaseMOTModel
@MODELS.register_module()
class QDTrack(BaseMOTModel):
"""Quasi-Dense Similarity Learning for Multiple Object Tracking.
This multi object tracker is the implementation of `QDTrack
<https://arxiv.org/abs/2006.06664>`_.
Args:
detector (dict): Configuration of detector. Defaults to None.
track_head (dict): Configuration of track head. Defaults to None.
tracker (dict): Configuration of tracker. Defaults to None.
freeze_detector (bool): If True, freeze the detector weights.
Defaults to False.
data_preprocessor (dict or ConfigDict, optional): The pre-process
config of :class:`TrackDataPreprocessor`. it usually includes,
``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``.
init_cfg (dict or list[dict]): Configuration of initialization.
Defaults to None.
"""
def __init__(self,
detector: Optional[dict] = None,
track_head: Optional[dict] = None,
tracker: Optional[dict] = None,
freeze_detector: bool = False,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(data_preprocessor, init_cfg)
if detector is not None:
self.detector = MODELS.build(detector)
if track_head is not None:
self.track_head = MODELS.build(track_head)
if tracker is not None:
self.tracker = MODELS.build(tracker)
self.freeze_detector = freeze_detector
if self.freeze_detector:
self.freeze_module('detector')
def predict(self,
inputs: Tensor,
data_samples: TrackSampleList,
rescale: bool = True,
**kwargs) -> TrackSampleList:
"""Predict results from a video and data samples with post- processing.
Args:
inputs (Tensor): of shape (N, T, C, H, W) encoding
input images. The N denotes batch size.
The T denotes the number of frames in a video.
data_samples (list[:obj:`TrackDataSample`]): The batch
data samples. It usually includes information such
as `video_data_samples`.
rescale (bool, Optional): If False, then returned bboxes and masks
will fit the scale of img, otherwise, returned bboxes and masks
will fit the scale of original image shape. Defaults to True.
Returns:
TrackSampleList: Tracking results of the inputs.
"""
assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).'
assert inputs.size(0) == 1, \
'QDTrack inference only support 1 batch size per gpu for now.'
assert len(data_samples) == 1, \
'QDTrack only support 1 batch size per gpu for now.'
track_data_sample = data_samples[0]
video_len = len(track_data_sample)
if track_data_sample[0].frame_id == 0:
self.tracker.reset()
for frame_id in range(video_len):
img_data_sample = track_data_sample[frame_id]
single_img = inputs[:, frame_id].contiguous()
x = self.detector.extract_feat(single_img)
rpn_results_list = self.detector.rpn_head.predict(
x, [img_data_sample])
# det_results List[InstanceData]
det_results = self.detector.roi_head.predict(
x, rpn_results_list, [img_data_sample], rescale=rescale)
assert len(det_results) == 1, 'Batch inference is not supported.'
img_data_sample.pred_instances = det_results[0]
frame_pred_track_instances = self.tracker.track(
model=self,
img=single_img,
feats=x,
data_sample=img_data_sample,
**kwargs)
img_data_sample.pred_track_instances = frame_pred_track_instances
return [track_data_sample]
def loss(self, inputs: Tensor, data_samples: TrackSampleList,
**kwargs) -> Union[dict, tuple]:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Dict[str, Tensor]): of shape (N, T, C, H, W) encoding
input images. Typically these should be mean centered and std
scaled. The N denotes batch size. The T denotes the number of
frames.
data_samples (list[:obj:`TrackDataSample`]): The batch
data samples. It usually includes information such
as `video_data_samples`.
Returns:
dict: A dictionary of loss components.
"""
# modify the inputs shape to fit mmdet
assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).'
assert inputs.size(1) == 2, \
'QDTrack can only have 1 key frame and 1 reference frame.'
# split the data_samples into two aspects: key frames and reference
# frames
ref_data_samples, key_data_samples = [], []
key_frame_inds, ref_frame_inds = [], []
# set cat_id of gt_labels to 0 in RPN
for track_data_sample in data_samples:
key_frame_inds.append(track_data_sample.key_frames_inds[0])
ref_frame_inds.append(track_data_sample.ref_frames_inds[0])
key_data_sample = track_data_sample.get_key_frames()[0]
key_data_sample.gt_instances.labels = \
torch.zeros_like(key_data_sample.gt_instances.labels)
key_data_samples.append(key_data_sample)
ref_data_sample = track_data_sample.get_ref_frames()[0]
ref_data_samples.append(ref_data_sample)
key_frame_inds = torch.tensor(key_frame_inds, dtype=torch.int64)
ref_frame_inds = torch.tensor(ref_frame_inds, dtype=torch.int64)
batch_inds = torch.arange(len(inputs))
key_imgs = inputs[batch_inds, key_frame_inds].contiguous()
ref_imgs = inputs[batch_inds, ref_frame_inds].contiguous()
x = self.detector.extract_feat(key_imgs)
ref_x = self.detector.extract_feat(ref_imgs)
losses = dict()
# RPN head forward and loss
assert self.detector.with_rpn, \
'QDTrack only support detector with RPN.'
proposal_cfg = self.detector.train_cfg.get('rpn_proposal',
self.detector.test_cfg.rpn)
rpn_losses, rpn_results_list = self.detector.rpn_head. \
loss_and_predict(x,
key_data_samples,
proposal_cfg=proposal_cfg,
**kwargs)
ref_rpn_results_list = self.detector.rpn_head.predict(
ref_x, ref_data_samples, **kwargs)
# avoid get same name with roi_head loss
keys = rpn_losses.keys()
for key in keys:
if 'loss' in key and 'rpn' not in key:
rpn_losses[f'rpn_{key}'] = rpn_losses.pop(key)
losses.update(rpn_losses)
# roi_head loss
losses_detect = self.detector.roi_head.loss(x, rpn_results_list,
key_data_samples, **kwargs)
losses.update(losses_detect)
# tracking head loss
losses_track = self.track_head.loss(x, ref_x, rpn_results_list,
ref_rpn_results_list, data_samples,
**kwargs)
losses.update(losses_track)
return losses