rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from typing import Iterator, List, Optional, Sized, Union
import numpy as np
import torch
from mmengine.dataset import BaseDataset
from mmengine.dist import get_dist_info, sync_random_seed
from torch.utils.data import Sampler
from mmdet.registry import DATA_SAMPLERS
@DATA_SAMPLERS.register_module()
class MultiSourceSampler(Sampler):
r"""Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different
datasets to form batches.
Args:
dataset (Sized): The dataset.
batch_size (int): Size of mini-batch.
source_ratio (list[int | float]): The sampling ratio of different
source datasets in a mini-batch.
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
seed (int, optional): Random seed. If None, set a random seed.
Defaults to None.
Examples:
>>> dataset_type = 'ConcatDataset'
>>> sub_dataset_type = 'CocoDataset'
>>> data_root = 'data/coco/'
>>> sup_ann = '../coco_semi_annos/[email protected]'
>>> unsup_ann = '../coco_semi_annos/' \
>>> '[email protected]'
>>> dataset = dict(type=dataset_type,
>>> datasets=[
>>> dict(
>>> type=sub_dataset_type,
>>> data_root=data_root,
>>> ann_file=sup_ann,
>>> data_prefix=dict(img='train2017/'),
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32),
>>> pipeline=sup_pipeline),
>>> dict(
>>> type=sub_dataset_type,
>>> data_root=data_root,
>>> ann_file=unsup_ann,
>>> data_prefix=dict(img='train2017/'),
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32),
>>> pipeline=unsup_pipeline),
>>> ])
>>> train_dataloader = dict(
>>> batch_size=5,
>>> num_workers=5,
>>> persistent_workers=True,
>>> sampler=dict(type='MultiSourceSampler',
>>> batch_size=5, source_ratio=[1, 4]),
>>> batch_sampler=None,
>>> dataset=dataset)
"""
def __init__(self,
dataset: Sized,
batch_size: int,
source_ratio: List[Union[int, float]],
shuffle: bool = True,
seed: Optional[int] = None) -> None:
assert hasattr(dataset, 'cumulative_sizes'),\
f'The dataset must be ConcatDataset, but get {dataset}'
assert isinstance(batch_size, int) and batch_size > 0, \
'batch_size must be a positive integer value, ' \
f'but got batch_size={batch_size}'
assert isinstance(source_ratio, list), \
f'source_ratio must be a list, but got source_ratio={source_ratio}'
assert len(source_ratio) == len(dataset.cumulative_sizes), \
'The length of source_ratio must be equal to ' \
f'the number of datasets, but got source_ratio={source_ratio}'
rank, world_size = get_dist_info()
self.rank = rank
self.world_size = world_size
self.dataset = dataset
self.cumulative_sizes = [0] + dataset.cumulative_sizes
self.batch_size = batch_size
self.source_ratio = source_ratio
self.num_per_source = [
int(batch_size * sr / sum(source_ratio)) for sr in source_ratio
]
self.num_per_source[0] = batch_size - sum(self.num_per_source[1:])
assert sum(self.num_per_source) == batch_size, \
'The sum of num_per_source must be equal to ' \
f'batch_size, but get {self.num_per_source}'
self.seed = sync_random_seed() if seed is None else seed
self.shuffle = shuffle
self.source2inds = {
source: self._indices_of_rank(len(ds))
for source, ds in enumerate(dataset.datasets)
}
def _infinite_indices(self, sample_size: int) -> Iterator[int]:
"""Infinitely yield a sequence of indices."""
g = torch.Generator()
g.manual_seed(self.seed)
while True:
if self.shuffle:
yield from torch.randperm(sample_size, generator=g).tolist()
else:
yield from torch.arange(sample_size).tolist()
def _indices_of_rank(self, sample_size: int) -> Iterator[int]:
"""Slice the infinite indices by rank."""
yield from itertools.islice(
self._infinite_indices(sample_size), self.rank, None,
self.world_size)
def __iter__(self) -> Iterator[int]:
batch_buffer = []
while True:
for source, num in enumerate(self.num_per_source):
batch_buffer_per_source = []
for idx in self.source2inds[source]:
idx += self.cumulative_sizes[source]
batch_buffer_per_source.append(idx)
if len(batch_buffer_per_source) == num:
batch_buffer += batch_buffer_per_source
break
yield from batch_buffer
batch_buffer = []
def __len__(self) -> int:
return len(self.dataset)
def set_epoch(self, epoch: int) -> None:
"""Not supported in `epoch-based runner."""
pass
@DATA_SAMPLERS.register_module()
class GroupMultiSourceSampler(MultiSourceSampler):
r"""Group Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different
datasets but the same group to form batches.
Args:
dataset (Sized): The dataset.
batch_size (int): Size of mini-batch.
source_ratio (list[int | float]): The sampling ratio of different
source datasets in a mini-batch.
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
seed (int, optional): Random seed. If None, set a random seed.
Defaults to None.
"""
def __init__(self,
dataset: BaseDataset,
batch_size: int,
source_ratio: List[Union[int, float]],
shuffle: bool = True,
seed: Optional[int] = None) -> None:
super().__init__(
dataset=dataset,
batch_size=batch_size,
source_ratio=source_ratio,
shuffle=shuffle,
seed=seed)
self._get_source_group_info()
self.group_source2inds = [{
source:
self._indices_of_rank(self.group2size_per_source[source][group])
for source in range(len(dataset.datasets))
} for group in range(len(self.group_ratio))]
def _get_source_group_info(self) -> None:
self.group2size_per_source = [{0: 0, 1: 0}, {0: 0, 1: 0}]
self.group2inds_per_source = [{0: [], 1: []}, {0: [], 1: []}]
for source, dataset in enumerate(self.dataset.datasets):
for idx in range(len(dataset)):
data_info = dataset.get_data_info(idx)
width, height = data_info['width'], data_info['height']
group = 0 if width < height else 1
self.group2size_per_source[source][group] += 1
self.group2inds_per_source[source][group].append(idx)
self.group_sizes = np.zeros(2, dtype=np.int64)
for group2size in self.group2size_per_source:
for group, size in group2size.items():
self.group_sizes[group] += size
self.group_ratio = self.group_sizes / sum(self.group_sizes)
def __iter__(self) -> Iterator[int]:
batch_buffer = []
while True:
group = np.random.choice(
list(range(len(self.group_ratio))), p=self.group_ratio)
for source, num in enumerate(self.num_per_source):
batch_buffer_per_source = []
for idx in self.group_source2inds[group][source]:
idx = self.group2inds_per_source[source][group][
idx] + self.cumulative_sizes[source]
batch_buffer_per_source.append(idx)
if len(batch_buffer_per_source) == num:
batch_buffer += batch_buffer_per_source
break
yield from batch_buffer
batch_buffer = []