Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# dataset settings | |
dataset_type = 'CityscapesDataset' | |
data_root = 'data/cityscapes/' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/segmentation/cityscapes/' | |
# Method 2: Use backend_args, file_client_args in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/segmentation/', | |
# 'data/': 's3://openmmlab/datasets/segmentation/' | |
# })) | |
backend_args = None | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='RandomResize', | |
scale=[(2048, 800), (2048, 1024)], | |
keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(2048, 1024), keep_ratio=True), | |
# If you don't have a gt annotation, delete the pipeline | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type='RepeatDataset', | |
times=8, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instancesonly_filtered_gtFine_train.json', | |
data_prefix=dict(img='leftImg8bit/train/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args))) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instancesonly_filtered_gtFine_val.json', | |
data_prefix=dict(img='leftImg8bit/val/'), | |
test_mode=True, | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = [ | |
dict( | |
type='CocoMetric', | |
ann_file=data_root + | |
'annotations/instancesonly_filtered_gtFine_val.json', | |
metric=['bbox', 'segm'], | |
backend_args=backend_args), | |
dict( | |
type='CityScapesMetric', | |
seg_prefix=data_root + 'gtFine/val', | |
outfile_prefix='./work_dirs/cityscapes_metric/instance', | |
backend_args=backend_args) | |
] | |
test_evaluator = val_evaluator | |
# inference on test dataset and | |
# format the output results for submission. | |
# test_dataloader = dict( | |
# batch_size=1, | |
# num_workers=2, | |
# persistent_workers=True, | |
# drop_last=False, | |
# sampler=dict(type='DefaultSampler', shuffle=False), | |
# dataset=dict( | |
# type=dataset_type, | |
# data_root=data_root, | |
# ann_file='annotations/instancesonly_filtered_gtFine_test.json', | |
# data_prefix=dict(img='leftImg8bit/test/'), | |
# test_mode=True, | |
# filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
# pipeline=test_pipeline)) | |
# test_evaluator = dict( | |
# type='CityScapesMetric', | |
# format_only=True, | |
# outfile_prefix='./work_dirs/cityscapes_metric/test') | |