Spaces:
Running
Running
File size: 12,829 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Mapping, Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.registry import MODELS
from mmengine.structures import BaseDataElement
from mmengine.utils import is_seq_of
from ..utils import stack_batch
CastData = Union[tuple, dict, BaseDataElement, torch.Tensor, list, bytes, str,
None]
@MODELS.register_module()
class BaseDataPreprocessor(nn.Module):
"""Base data pre-processor used for copying data to the target device.
Subclasses inherit from ``BaseDataPreprocessor`` could override the
forward method to implement custom data pre-processing, such as
batch-resize, MixUp, or CutMix.
Args:
non_blocking (bool): Whether block current process
when transferring data to device.
New in version 0.3.0.
Note:
Data dictionary returned by dataloader must be a dict and at least
contain the ``inputs`` key.
"""
def __init__(self, non_blocking: Optional[bool] = False):
super().__init__()
self._non_blocking = non_blocking
self._device = torch.device('cpu')
def cast_data(self, data: CastData) -> CastData:
"""Copying data to the target device.
Args:
data (dict): Data returned by ``DataLoader``.
Returns:
CollatedResult: Inputs and data sample at target device.
"""
if isinstance(data, Mapping):
return {key: self.cast_data(data[key]) for key in data}
elif isinstance(data, (str, bytes)) or data is None:
return data
elif isinstance(data, tuple) and hasattr(data, '_fields'):
# namedtuple
return type(data)(*(self.cast_data(sample) for sample in data)) # type: ignore # noqa: E501 # yapf:disable
elif isinstance(data, Sequence):
return type(data)(self.cast_data(sample) for sample in data) # type: ignore # noqa: E501 # yapf:disable
elif isinstance(data, (torch.Tensor, BaseDataElement)):
return data.to(self.device, non_blocking=self._non_blocking)
else:
return data
def forward(self, data: dict, training: bool = False) -> Union[dict, list]:
"""Preprocesses the data into the model input format.
After the data pre-processing of :meth:`cast_data`, ``forward``
will stack the input tensor list to a batch tensor at the first
dimension.
Args:
data (dict): Data returned by dataloader
training (bool): Whether to enable training time augmentation.
Returns:
dict or list: Data in the same format as the model input.
"""
return self.cast_data(data) # type: ignore
@property
def device(self):
return self._device
def to(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Returns:
nn.Module: The model itself.
"""
# Since Torch has not officially merged
# the npu-related fields, using the _parse_to function
# directly will cause the NPU to not be found.
# Here, the input parameters are processed to avoid errors.
if args and isinstance(args[0], str) and 'npu' in args[0]:
args = tuple(
[list(args)[0].replace('npu', torch.npu.native_device)])
if kwargs and 'npu' in str(kwargs.get('device', '')):
kwargs['device'] = kwargs['device'].replace(
'npu', torch.npu.native_device)
device = torch._C._nn._parse_to(*args, **kwargs)[0]
if device is not None:
self._device = torch.device(device)
return super().to(*args, **kwargs)
def cuda(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Returns:
nn.Module: The model itself.
"""
self._device = torch.device(torch.cuda.current_device())
return super().cuda()
def npu(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Returns:
nn.Module: The model itself.
"""
self._device = torch.device(torch.npu.current_device())
return super().npu()
def mlu(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Returns:
nn.Module: The model itself.
"""
self._device = torch.device(torch.mlu.current_device())
return super().mlu()
def cpu(self, *args, **kwargs) -> nn.Module:
"""Overrides this method to set the :attr:`device`
Returns:
nn.Module: The model itself.
"""
self._device = torch.device('cpu')
return super().cpu()
@MODELS.register_module()
class ImgDataPreprocessor(BaseDataPreprocessor):
"""Image pre-processor for normalization and bgr to rgb conversion.
Accepts the data sampled by the dataloader, and preprocesses it into the
format of the model input. ``ImgDataPreprocessor`` provides the
basic data pre-processing as follows
- Collates and moves data to the target device.
- Converts inputs from bgr to rgb if the shape of input is (3, H, W).
- Normalizes image with defined std and mean.
- Pads inputs to the maximum size of current batch with defined
``pad_value``. The padding size can be divisible by a defined
``pad_size_divisor``
- Stack inputs to batch_inputs.
For ``ImgDataPreprocessor``, the dimension of the single inputs must be
(3, H, W).
Note:
``ImgDataPreprocessor`` and its subclass is built in the
constructor of :class:`BaseDataset`.
Args:
mean (Sequence[float or int], optional): The pixel mean of image
channels. If ``bgr_to_rgb=True`` it means the mean value of R,
G, B channels. If the length of `mean` is 1, it means all
channels have the same mean value, or the input is a gray image.
If it is not specified, images will not be normalized. Defaults
None.
std (Sequence[float or int], optional): The pixel standard deviation of
image channels. If ``bgr_to_rgb=True`` it means the standard
deviation of R, G, B channels. If the length of `std` is 1,
it means all channels have the same standard deviation, or the
input is a gray image. If it is not specified, images will
not be normalized. Defaults None.
pad_size_divisor (int): The size of padded image should be
divisible by ``pad_size_divisor``. Defaults to 1.
pad_value (float or int): The padded pixel value. Defaults to 0.
bgr_to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
non_blocking (bool): Whether block current process
when transferring data to device.
New in version v0.3.0.
Note:
if images do not need to be normalized, `std` and `mean` should be
both set to None, otherwise both of them should be set to a tuple of
corresponding values.
"""
def __init__(self,
mean: Optional[Sequence[Union[float, int]]] = None,
std: Optional[Sequence[Union[float, int]]] = None,
pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False,
non_blocking: Optional[bool] = False):
super().__init__(non_blocking)
assert not (bgr_to_rgb and rgb_to_bgr), (
'`bgr2rgb` and `rgb2bgr` cannot be set to True at the same time')
assert (mean is None) == (std is None), (
'mean and std should be both None or tuple')
if mean is not None:
assert len(mean) == 3 or len(mean) == 1, (
'`mean` should have 1 or 3 values, to be compatible with '
f'RGB or gray image, but got {len(mean)} values')
assert len(std) == 3 or len(std) == 1, ( # type: ignore
'`std` should have 1 or 3 values, to be compatible with RGB ' # type: ignore # noqa: E501
f'or gray image, but got {len(std)} values') # type: ignore
self._enable_normalize = True
self.register_buffer('mean',
torch.tensor(mean).view(-1, 1, 1), False)
self.register_buffer('std',
torch.tensor(std).view(-1, 1, 1), False)
else:
self._enable_normalize = False
self._channel_conversion = rgb_to_bgr or bgr_to_rgb
self.pad_size_divisor = pad_size_divisor
self.pad_value = pad_value
def forward(self, data: dict, training: bool = False) -> Union[dict, list]:
"""Performs normalization、padding and bgr2rgb conversion based on
``BaseDataPreprocessor``.
Args:
data (dict): Data sampled from dataset. If the collate
function of DataLoader is :obj:`pseudo_collate`, data will be a
list of dict. If collate function is :obj:`default_collate`,
data will be a tuple with batch input tensor and list of data
samples.
training (bool): Whether to enable training time augmentation. If
subclasses override this method, they can perform different
preprocessing strategies for training and testing based on the
value of ``training``.
Returns:
dict or list: Data in the same format as the model input.
"""
data = self.cast_data(data) # type: ignore
_batch_inputs = data['inputs']
# Process data with `pseudo_collate`.
if is_seq_of(_batch_inputs, torch.Tensor):
batch_inputs = []
for _batch_input in _batch_inputs:
# channel transform
if self._channel_conversion:
_batch_input = _batch_input[[2, 1, 0], ...]
# Convert to float after channel conversion to ensure
# efficiency
_batch_input = _batch_input.float()
# Normalization.
if self._enable_normalize:
if self.mean.shape[0] == 3:
assert _batch_input.dim(
) == 3 and _batch_input.shape[0] == 3, (
'If the mean has 3 values, the input tensor '
'should in shape of (3, H, W), but got the tensor '
f'with shape {_batch_input.shape}')
_batch_input = (_batch_input - self.mean) / self.std
batch_inputs.append(_batch_input)
# Pad and stack Tensor.
batch_inputs = stack_batch(batch_inputs, self.pad_size_divisor,
self.pad_value)
# Process data with `default_collate`.
elif isinstance(_batch_inputs, torch.Tensor):
assert _batch_inputs.dim() == 4, (
'The input of `ImgDataPreprocessor` should be a NCHW tensor '
'or a list of tensor, but got a tensor with shape: '
f'{_batch_inputs.shape}')
if self._channel_conversion:
_batch_inputs = _batch_inputs[:, [2, 1, 0], ...]
# Convert to float after channel conversion to ensure
# efficiency
_batch_inputs = _batch_inputs.float()
if self._enable_normalize:
_batch_inputs = (_batch_inputs - self.mean) / self.std
h, w = _batch_inputs.shape[2:]
target_h = math.ceil(
h / self.pad_size_divisor) * self.pad_size_divisor
target_w = math.ceil(
w / self.pad_size_divisor) * self.pad_size_divisor
pad_h = target_h - h
pad_w = target_w - w
batch_inputs = F.pad(_batch_inputs, (0, pad_w, 0, pad_h),
'constant', self.pad_value)
else:
raise TypeError('Output of `cast_data` should be a dict of '
'list/tuple with inputs and data_samples, '
f'but got {type(data)}: {data}')
data['inputs'] = batch_inputs
data.setdefault('data_samples', None)
return data
|