Spaces:
Running
Running
File size: 38,693 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import math
from typing import Callable, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Scale
from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d
from mmengine.config import ConfigDict
from mmengine.model import BaseModel
from mmengine.structures import InstanceData
from torch import Tensor
try:
from transformers import BertConfig
except ImportError:
BertConfig = None
from mmdet.registry import MODELS
from mmdet.structures.bbox import cat_boxes
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..utils import (BertEncoderLayer, VLFuse, filter_scores_and_topk,
permute_and_flatten, select_single_mlvl,
unpack_gt_instances)
from ..utils.vlfuse_helper import MAX_CLAMP_VALUE
from .atss_head import ATSSHead
def convert_grounding_to_cls_scores(logits: Tensor,
positive_maps: List[dict]) -> Tensor:
"""Convert logits to class scores."""
assert len(positive_maps) == logits.shape[0] # batch size
scores = torch.zeros(logits.shape[0], logits.shape[1],
len(positive_maps[0])).to(logits.device)
if positive_maps is not None:
if all(x == positive_maps[0] for x in positive_maps):
# only need to compute once
positive_map = positive_maps[0]
for label_j in positive_map:
scores[:, :, label_j -
1] = logits[:, :,
torch.LongTensor(positive_map[label_j]
)].mean(-1)
else:
for i, positive_map in enumerate(positive_maps):
for label_j in positive_map:
scores[i, :, label_j - 1] = logits[
i, :, torch.LongTensor(positive_map[label_j])].mean(-1)
return scores
class Conv3x3Norm(nn.Module):
"""Conv3x3 and norm."""
def __init__(self,
in_channels: int,
out_channels: int,
stride: int,
groups: int = 1,
use_dcn: bool = False,
norm_type: Optional[Union[Sequence, str]] = None):
super().__init__()
if use_dcn:
self.conv = ModulatedDeformConv2d(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=groups)
else:
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=groups)
if isinstance(norm_type, Sequence):
assert len(norm_type) == 2
assert norm_type[0] == 'gn'
gn_group = norm_type[1]
norm_type = norm_type[0]
if norm_type == 'bn':
bn_op = nn.BatchNorm2d(out_channels)
elif norm_type == 'gn':
bn_op = nn.GroupNorm(
num_groups=gn_group, num_channels=out_channels)
if norm_type is not None:
self.bn = bn_op
else:
self.bn = None
def forward(self, x, **kwargs):
x = self.conv(x, **kwargs)
if self.bn:
x = self.bn(x)
return x
class DyReLU(nn.Module):
"""Dynamic ReLU."""
def __init__(self,
in_channels: int,
out_channels: int,
expand_ratio: int = 4):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.expand_ratio = expand_ratio
self.out_channels = out_channels
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // expand_ratio),
nn.ReLU(inplace=True),
nn.Linear(in_channels // expand_ratio,
out_channels * self.expand_ratio),
nn.Hardsigmoid(inplace=True))
def forward(self, x) -> Tensor:
x_out = x
b, c, h, w = x.size()
x = self.avg_pool(x).view(b, c)
x = self.fc(x).view(b, -1, 1, 1)
a1, b1, a2, b2 = torch.split(x, self.out_channels, dim=1)
a1 = (a1 - 0.5) * 2 + 1.0
a2 = (a2 - 0.5) * 2
b1 = b1 - 0.5
b2 = b2 - 0.5
out = torch.max(x_out * a1 + b1, x_out * a2 + b2)
return out
class DyConv(nn.Module):
"""Dynamic Convolution."""
def __init__(self,
conv_func: Callable,
in_channels: int,
out_channels: int,
use_dyfuse: bool = True,
use_dyrelu: bool = False,
use_dcn: bool = False):
super().__init__()
self.dyconvs = nn.ModuleList()
self.dyconvs.append(conv_func(in_channels, out_channels, 1))
self.dyconvs.append(conv_func(in_channels, out_channels, 1))
self.dyconvs.append(conv_func(in_channels, out_channels, 2))
if use_dyfuse:
self.attnconv = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.ReLU(inplace=True))
self.h_sigmoid = nn.Hardsigmoid(inplace=True)
else:
self.attnconv = None
if use_dyrelu:
self.relu = DyReLU(in_channels, out_channels)
else:
self.relu = nn.ReLU()
if use_dcn:
self.offset = nn.Conv2d(
in_channels, 27, kernel_size=3, stride=1, padding=1)
else:
self.offset = None
self.init_weights()
def init_weights(self):
for m in self.dyconvs.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, 0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
if self.attnconv is not None:
for m in self.attnconv.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, 0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, inputs: dict) -> dict:
visual_feats = inputs['visual']
out_vis_feats = []
for level, feature in enumerate(visual_feats):
offset_conv_args = {}
if self.offset is not None:
offset_mask = self.offset(feature)
offset = offset_mask[:, :18, :, :]
mask = offset_mask[:, 18:, :, :].sigmoid()
offset_conv_args = dict(offset=offset, mask=mask)
temp_feats = [self.dyconvs[1](feature, **offset_conv_args)]
if level > 0:
temp_feats.append(self.dyconvs[2](visual_feats[level - 1],
**offset_conv_args))
if level < len(visual_feats) - 1:
temp_feats.append(
F.upsample_bilinear(
self.dyconvs[0](visual_feats[level + 1],
**offset_conv_args),
size=[feature.size(2),
feature.size(3)]))
mean_feats = torch.mean(
torch.stack(temp_feats), dim=0, keepdim=False)
if self.attnconv is not None:
attn_feat = []
res_feat = []
for feat in temp_feats:
res_feat.append(feat)
attn_feat.append(self.attnconv(feat))
res_feat = torch.stack(res_feat)
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_feat))
mean_feats = torch.mean(
res_feat * spa_pyr_attn, dim=0, keepdim=False)
out_vis_feats.append(mean_feats)
out_vis_feats = [self.relu(item) for item in out_vis_feats]
features_dict = {'visual': out_vis_feats, 'lang': inputs['lang']}
return features_dict
class VLFusionModule(BaseModel):
"""Visual-lang Fusion Module."""
def __init__(self,
in_channels: int,
feat_channels: int,
num_base_priors: int,
early_fuse: bool = False,
num_dyhead_blocks: int = 6,
lang_model_name: str = 'bert-base-uncased',
use_dyrelu: bool = True,
use_dyfuse: bool = True,
use_dcn: bool = True,
use_checkpoint: bool = False,
**kwargs) -> None:
super().__init__(**kwargs)
if BertConfig is None:
raise RuntimeError(
'transformers is not installed, please install it by: '
'pip install transformers.')
self.in_channels = in_channels
self.feat_channels = feat_channels
self.num_base_priors = num_base_priors
self.early_fuse = early_fuse
self.num_dyhead_blocks = num_dyhead_blocks
self.use_dyrelu = use_dyrelu
self.use_dyfuse = use_dyfuse
self.use_dcn = use_dcn
self.use_checkpoint = use_checkpoint
self.lang_cfg = BertConfig.from_pretrained(lang_model_name)
self.lang_dim = self.lang_cfg.hidden_size
self._init_layers()
def _init_layers(self) -> None:
"""Initialize layers of the model."""
bias_value = -math.log((1 - 0.01) / 0.01)
dyhead_tower = []
for i in range(self.num_dyhead_blocks):
if self.early_fuse:
# cross-modality fusion
dyhead_tower.append(VLFuse(use_checkpoint=self.use_checkpoint))
# lang branch
dyhead_tower.append(
BertEncoderLayer(
self.lang_cfg,
clamp_min_for_underflow=True,
clamp_max_for_overflow=True))
# vision branch
dyhead_tower.append(
DyConv(
lambda i, o, s: Conv3x3Norm(
i, o, s, use_dcn=self.use_dcn, norm_type=['gn', 16]),
self.in_channels if i == 0 else self.feat_channels,
self.feat_channels,
use_dyrelu=(self.use_dyrelu
and self.in_channels == self.feat_channels)
if i == 0 else self.use_dyrelu,
use_dyfuse=(self.use_dyfuse
and self.in_channels == self.feat_channels)
if i == 0 else self.use_dyfuse,
use_dcn=(self.use_dcn
and self.in_channels == self.feat_channels)
if i == 0 else self.use_dcn,
))
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower))
self.bbox_pred = nn.Conv2d(
self.feat_channels, self.num_base_priors * 4, kernel_size=1)
self.centerness = nn.Conv2d(
self.feat_channels, self.num_base_priors * 1, kernel_size=1)
self.dot_product_projection_text = nn.Linear(
self.lang_dim,
self.num_base_priors * self.feat_channels,
bias=True)
self.log_scale = nn.Parameter(torch.Tensor([0.0]), requires_grad=True)
self.bias_lang = nn.Parameter(
torch.zeros(self.lang_dim), requires_grad=True)
self.bias0 = nn.Parameter(
torch.Tensor([bias_value]), requires_grad=True)
self.scales = nn.ModuleList([Scale(1.0) for _ in range(5)])
def forward(self, visual_feats: Tuple[Tensor],
language_feats: dict) -> Tuple:
feat_inputs = {'visual': visual_feats, 'lang': language_feats}
dyhead_tower = self.dyhead_tower(feat_inputs)
if self.early_fuse:
embedding = dyhead_tower['lang']['hidden']
else:
embedding = language_feats['embedded']
embedding = F.normalize(embedding, p=2, dim=-1)
dot_product_proj_tokens = self.dot_product_projection_text(embedding /
2.0)
dot_product_proj_tokens_bias = torch.matmul(
embedding, self.bias_lang) + self.bias0
bbox_preds = []
centerness = []
cls_logits = []
for i, feature in enumerate(visual_feats):
visual = dyhead_tower['visual'][i]
B, C, H, W = visual.shape
bbox_pred = self.scales[i](self.bbox_pred(visual))
bbox_preds.append(bbox_pred)
centerness.append(self.centerness(visual))
dot_product_proj_queries = permute_and_flatten(
visual, B, self.num_base_priors, C, H, W)
bias = dot_product_proj_tokens_bias.unsqueeze(1).repeat(
1, self.num_base_priors, 1)
dot_product_logit = (
torch.matmul(dot_product_proj_queries,
dot_product_proj_tokens.transpose(-1, -2)) /
self.log_scale.exp()) + bias
dot_product_logit = torch.clamp(
dot_product_logit, max=MAX_CLAMP_VALUE)
dot_product_logit = torch.clamp(
dot_product_logit, min=-MAX_CLAMP_VALUE)
cls_logits.append(dot_product_logit)
return bbox_preds, centerness, cls_logits
@MODELS.register_module()
class ATSSVLFusionHead(ATSSHead):
"""ATSS head with visual-language fusion module.
Args:
early_fuse (bool): Whether to fuse visual and language features
Defaults to False.
use_checkpoint (bool): Whether to use checkpoint. Defaults to False.
num_dyhead_blocks (int): Number of dynamic head blocks. Defaults to 6.
lang_model_name (str): Name of the language model.
Defaults to 'bert-base-uncased'.
"""
def __init__(self,
*args,
early_fuse: bool = False,
use_checkpoint: bool = False,
num_dyhead_blocks: int = 6,
lang_model_name: str = 'bert-base-uncased',
init_cfg=None,
**kwargs):
super().__init__(*args, **kwargs, init_cfg=init_cfg)
self.head = VLFusionModule(
in_channels=self.in_channels,
feat_channels=self.feat_channels,
num_base_priors=self.num_base_priors,
early_fuse=early_fuse,
use_checkpoint=use_checkpoint,
num_dyhead_blocks=num_dyhead_blocks,
lang_model_name=lang_model_name)
self.text_masks = None
def _init_layers(self) -> None:
"""No need to initialize the ATSS head layer."""
pass
def forward(self, visual_feats: Tuple[Tensor],
language_feats: dict) -> Tuple[Tensor]:
"""Forward function."""
bbox_preds, centerness, cls_logits = self.head(visual_feats,
language_feats)
return cls_logits, bbox_preds, centerness
def loss(self, visual_feats: Tuple[Tensor], language_feats: dict,
batch_data_samples):
outputs = unpack_gt_instances(batch_data_samples)
(batch_gt_instances, batch_gt_instances_ignore,
batch_img_metas) = outputs
outs = self(visual_feats, language_feats)
self.text_masks = language_feats['masks']
loss_inputs = outs + (batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
centernesses: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
centernesses (list[Tensor]): Centerness for each scale
level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_reg_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
anchors = torch.cat(anchor_list, dim=1)
labels = torch.cat(labels_list, dim=1)
label_weights = torch.cat(label_weights_list, dim=1)
bbox_targets = torch.cat(bbox_targets_list, dim=1)
cls_scores = torch.cat(cls_scores, dim=1)
centernesses_ = []
bbox_preds_ = []
for bbox_pred, centerness in zip(bbox_preds, centernesses):
centernesses_.append(
centerness.permute(0, 2, 3,
1).reshape(cls_scores.size(0), -1, 1))
bbox_preds_.append(
bbox_pred.permute(0, 2, 3,
1).reshape(cls_scores.size(0), -1, 4))
bbox_preds = torch.cat(bbox_preds_, dim=1)
centernesses = torch.cat(centernesses_, dim=1)
losses_cls, losses_bbox, loss_centerness, bbox_avg_factor = \
self._loss_by_feat(
anchors,
cls_scores,
bbox_preds,
centernesses,
labels,
label_weights,
bbox_targets,
avg_factor=avg_factor)
bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item()
losses_bbox = losses_bbox / bbox_avg_factor
return dict(
loss_cls=losses_cls,
loss_bbox=losses_bbox,
loss_centerness=loss_centerness)
def _loss_by_feat(self, anchors: Tensor, cls_score: Tensor,
bbox_pred: Tensor, centerness: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
avg_factor: float) -> dict:
"""Calculate the loss of all scale level based on the features
extracted by the detection head.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
anchors = anchors.reshape(-1, 4)
# ===== this change =====
pos_inds = (labels.sum(-1) > 0).reshape(-1)
# Loss is not computed for the padded regions of the text.
assert (self.text_masks.dim() == 2)
text_mask = (self.text_masks > 0).unsqueeze(1)
text_mask = text_mask.repeat(1, cls_score.size(1), 1)
cls_score = torch.masked_select(cls_score, text_mask).contiguous()
labels = torch.masked_select(labels, text_mask)
label_weights = label_weights[...,
None].repeat(1, 1, text_mask.size(-1))
label_weights = torch.masked_select(label_weights, text_mask)
bbox_pred = bbox_pred.reshape(-1, 4)
centerness = centerness.reshape(-1)
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
# classification loss
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor)
if pos_inds.sum() > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_centerness = centerness[pos_inds]
centerness_targets = self.centerness_target(
pos_anchors, pos_bbox_targets)
if torch.isnan(centerness_targets).any():
print('=====Centerness includes NaN=====')
mask = ~torch.isnan(centerness_targets)
centerness_targets = centerness_targets[mask]
pos_centerness = pos_centerness[mask]
pos_anchors = pos_anchors[mask]
pos_bbox_targets = pos_bbox_targets[mask]
pos_bbox_pred = pos_bbox_pred[mask]
if pos_bbox_targets.shape[0] == 0:
loss_bbox = bbox_pred.sum() * 0
loss_centerness = centerness.sum() * 0
centerness_targets = bbox_targets.new_tensor(0.)
return loss_cls, loss_bbox, loss_centerness, \
centerness_targets.sum()
# The decoding process takes the offset into consideration.
pos_anchors[:, 2:] += 1
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchors, pos_bbox_pred)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_bbox_targets,
weight=centerness_targets,
avg_factor=1.0)
# centerness loss
loss_centerness = self.loss_centerness(
pos_centerness, centerness_targets, avg_factor=avg_factor)
else:
loss_bbox = bbox_pred.sum() * 0
loss_centerness = centerness.sum() * 0
centerness_targets = bbox_targets.new_tensor(0.)
return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum()
def _get_targets_single(self,
flat_anchors: Tensor,
valid_flags: Tensor,
num_level_anchors: List[int],
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True) -> tuple:
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors ,4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
num_level_anchors (List[int]): Number of anchors of each scale
level.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: N is the number of total anchors in the image.
labels (Tensor): Labels of all anchors in the image with shape
(N,).
label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4)
pos_inds (Tensor): Indices of positive anchor with shape
(num_pos,).
neg_inds (Tensor): Indices of negative anchor with shape
(num_neg,).
sampling_result (:obj:`SamplingResult`): Sampling results.
"""
anchors = flat_anchors
# Align the official implementation
anchors[:, 2:] -= 1
num_level_anchors_inside = num_level_anchors
pred_instances = InstanceData(priors=anchors)
assign_result = self.assigner.assign(pred_instances,
num_level_anchors_inside,
gt_instances, gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
# ===== this change =====
labels = anchors.new_full((num_valid_anchors, self.feat_channels),
0,
dtype=torch.float32)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
if self.reg_decoded_bbox:
pos_bbox_targets = sampling_result.pos_gt_bboxes
else:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_priors, sampling_result.pos_gt_bboxes)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
# ===== this change =====
labels[pos_inds] = gt_instances.positive_maps[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds, sampling_result)
def centerness_target(self, anchors: Tensor, gts: Tensor) -> Tensor:
"""Calculate the centerness between anchors and gts.
Only calculate pos centerness targets, otherwise there may be nan.
Args:
anchors (Tensor): Anchors with shape (N, 4), "xyxy" format.
gts (Tensor): Ground truth bboxes with shape (N, 4), "xyxy" format.
Returns:
Tensor: Centerness between anchors and gts.
"""
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
l_ = anchors_cx - gts[:, 0]
t_ = anchors_cy - gts[:, 1]
r_ = gts[:, 2] - anchors_cx
b_ = gts[:, 3] - anchors_cy
left_right = torch.stack([l_, r_], dim=1)
top_bottom = torch.stack([t_, b_], dim=1)
centerness = torch.sqrt(
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) *
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]))
# assert not torch.isnan(centerness).any()
return centerness
def predict(self,
visual_feats: Tuple[Tensor],
language_feats: dict,
batch_data_samples,
rescale: bool = True):
"""Perform forward propagation of the detection head and predict
detection results on the features of the upstream network.
Args:
visual_feats (tuple[Tensor]): Multi-level visual features from the
upstream network, each is a 4D-tensor.
language_feats (dict): Language features from the upstream network.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
batch_token_positive_maps = [
data_samples.token_positive_map
for data_samples in batch_data_samples
]
outs = self(visual_feats, language_feats)
predictions = self.predict_by_feat(
*outs,
batch_img_metas=batch_img_metas,
batch_token_positive_maps=batch_token_positive_maps,
rescale=rescale)
return predictions
def predict_by_feat(self,
cls_logits: List[Tensor],
bbox_preds: List[Tensor],
score_factors: List[Tensor],
batch_img_metas: Optional[List[dict]] = None,
batch_token_positive_maps: Optional[List[dict]] = None,
cfg: Optional[ConfigDict] = None,
rescale: bool = False,
with_nms: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_logits (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, num_priors * 1, H, W). Defaults to None.
batch_img_metas (list[dict], Optional): Batch image meta info.
Defaults to None.
batch_token_positive_maps (list[dict], Optional): Batch token
positive map. Defaults to None.
cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(bbox_preds) == len(score_factors)
num_levels = len(bbox_preds)
featmap_sizes = [bbox_preds[i].shape[-2:] for i in range(num_levels)]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=bbox_preds[0].dtype,
device=bbox_preds[0].device)
result_list = []
for img_id in range(len(batch_img_metas)):
img_meta = batch_img_metas[img_id]
token_positive_maps = batch_token_positive_maps[img_id]
bbox_pred_list = select_single_mlvl(
bbox_preds, img_id, detach=True)
score_factor_list = select_single_mlvl(
score_factors, img_id, detach=True)
cls_logit_list = select_single_mlvl(
cls_logits, img_id, detach=True)
results = self._predict_by_feat_single(
bbox_pred_list=bbox_pred_list,
score_factor_list=score_factor_list,
cls_logit_list=cls_logit_list,
mlvl_priors=mlvl_priors,
token_positive_maps=token_positive_maps,
img_meta=img_meta,
cfg=cfg,
rescale=rescale,
with_nms=with_nms)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
bbox_pred_list: List[Tensor],
score_factor_list: List[Tensor],
cls_logit_list: List[Tensor],
mlvl_priors: List[Tensor],
token_positive_maps: dict,
img_meta: dict,
cfg: ConfigDict,
rescale: bool = True,
with_nms: bool = True) -> InstanceData:
"""Transform a single image's features extracted from the head into
bbox results.
Args:
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image, each item has shape
(num_priors * 1, H, W).
cls_logit_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid. In all
anchor-based methods, it has shape (num_priors, 4). In
all anchor-free methods, it has shape (num_priors, 2)
when `with_stride=True`, otherwise it still has shape
(num_priors, 4).
token_positive_maps (dict): Token positive map.
img_meta (dict): Image meta info.
cfg (mmengine.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
score_thr = cfg.get('score_thr', 0)
mlvl_bbox_preds = []
mlvl_valid_priors = []
mlvl_scores = []
mlvl_labels = []
for level_idx, (bbox_pred, score_factor, cls_logit, priors) in \
enumerate(zip(bbox_pred_list,
score_factor_list, cls_logit_list, mlvl_priors)):
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(
-1, self.bbox_coder.encode_size)
score_factor = score_factor.permute(1, 2, 0).reshape(-1).sigmoid()
scores = convert_grounding_to_cls_scores(
logits=cls_logit.sigmoid()[None],
positive_maps=[token_positive_maps])[0]
results = filter_scores_and_topk(
scores, score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, keep_idxs, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
score_factor = score_factor[keep_idxs]
scores = torch.sqrt(scores * score_factor)
mlvl_bbox_preds.append(bbox_pred)
mlvl_valid_priors.append(priors)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
bbox_pred = torch.cat(mlvl_bbox_preds)
priors = cat_boxes(mlvl_valid_priors)
bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape)
results = InstanceData()
results.bboxes = bboxes
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
predictions = self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
if len(predictions) > 0:
# Note: GLIP adopts a very strange bbox decoder logic,
# and if 1 is not added here, it will not align with
# the official mAP.
predictions.bboxes[:, 2:] = predictions.bboxes[:, 2:] + 1
return predictions
|