Spaces:
Running
Running
File size: 2,298 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
dataset_type = 'YouTubeVISDataset'
data_root = 'data/youtube_vis_2019/'
dataset_version = data_root[-5:-1] # 2019 or 2021
backend_args = None
# dataset settings
train_pipeline = [
dict(
type='UniformRefFrameSample',
num_ref_imgs=1,
frame_range=100,
filter_key_img=True),
dict(
type='TransformBroadcaster',
share_random_params=True,
transforms=[
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadTrackAnnotations', with_mask=True),
dict(type='Resize', scale=(640, 360), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
]),
dict(type='PackTrackInputs')
]
test_pipeline = [
dict(
type='TransformBroadcaster',
transforms=[
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=(640, 360), keep_ratio=True),
dict(type='LoadTrackAnnotations', with_mask=True),
]),
dict(type='PackTrackInputs')
]
# dataloader
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
# sampler=dict(type='TrackImgSampler'), # image-based sampling
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='TrackAspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
dataset_version=dataset_version,
ann_file='annotations/youtube_vis_2019_train.json',
data_prefix=dict(img_path='train/JPEGImages'),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
dataset_version=dataset_version,
ann_file='annotations/youtube_vis_2019_valid.json',
data_prefix=dict(img_path='valid/JPEGImages'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
|