File size: 55,203 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
// Copyright (c) OpenMMLab. All rights reserved
#include <torch/extension.h>

#include "pytorch_cpp_helper.hpp"

std::string get_compiler_version();
std::string get_compiling_cuda_version();

void assign_score_withk_forward(const Tensor &points, const Tensor &centers,
                                const Tensor &scores, const Tensor &knn_idx,
                                Tensor &output, int B, int N0, int N1, int M,
                                int K, int O, int aggregate);

void assign_score_withk_backward(const Tensor &grad_out, const Tensor &points,
                                 const Tensor &centers, const Tensor &scores,
                                 const Tensor &knn_idx, Tensor &grad_points,
                                 Tensor &grad_centers, Tensor &grad_scores,
                                 int B, int N0, int N1, int M, int K, int O,
                                 int aggregate);

void carafe_naive_forward(Tensor features, Tensor masks, Tensor output,
                          int kernel_size, int group_size, int scale_factor);

void carafe_naive_backward(Tensor top_grad, Tensor features, Tensor masks,
                           Tensor bottom_grad, Tensor mask_grad,
                           int kernel_size, int group_size, int scale_factor);

void carafe_forward(Tensor features, Tensor masks, Tensor rfeatures,
                    Tensor routput, Tensor rmasks, Tensor output,
                    int kernel_size, int group_size, int scale_factor);

void carafe_backward(Tensor top_grad, Tensor rfeatures, Tensor masks,
                     Tensor rtop_grad, Tensor rbottom_grad_hs,
                     Tensor rbottom_grad, Tensor rmask_grad, Tensor bottom_grad,
                     Tensor mask_grad, int kernel_size, int group_size,
                     int scale_factor);

void deform_conv_forward(Tensor input, Tensor weight, Tensor offset,
                         Tensor output, Tensor columns, Tensor ones, int kW,
                         int kH, int dW, int dH, int padW, int padH,
                         int dilationW, int dilationH, int group,
                         int deformable_group, int im2col_step);

void deform_conv_backward_input(Tensor input, Tensor offset, Tensor gradOutput,
                                Tensor gradInput, Tensor gradOffset,
                                Tensor weight, Tensor columns, int kW, int kH,
                                int dW, int dH, int padW, int padH,
                                int dilationW, int dilationH, int group,
                                int deformable_group, int im2col_step);

void deform_conv_backward_parameters(Tensor input, Tensor offset,
                                     Tensor gradOutput, Tensor gradWeight,
                                     Tensor columns, Tensor ones, int kW,
                                     int kH, int dW, int dH, int padW, int padH,
                                     int dilationW, int dilationH, int group,
                                     int deformable_group, float scale,
                                     int im2col_step);

void deform_roi_pool_forward(Tensor input, Tensor rois, Tensor offset,
                             Tensor output, int pooled_height, int pooled_width,
                             float spatial_scale, int sampling_ratio,
                             float gamma);

void deform_roi_pool_backward(Tensor grad_output, Tensor input, Tensor rois,
                              Tensor offset, Tensor grad_input,
                              Tensor grad_offset, int pooled_height,
                              int pooled_width, float spatial_scale,
                              int sampling_ratio, float gamma);

void group_points_forward(Tensor points_tensor, Tensor idx_tensor,
                          Tensor out_tensor, int b, int c, int n, int npoints,
                          int nsample);

void group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
                           Tensor grad_points_tensor, int b, int c, int n,
                           int npoints, int nsample);

void stack_group_points_forward(Tensor features_tensor,
                                Tensor features_batch_cnt_tensor,
                                Tensor idx_tensor, Tensor idx_batch_cnt_tensor,
                                Tensor out_tensor, int b, int c, int m,
                                int nsample);

void stack_group_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
                                 Tensor idx_batch_cnt_tensor,
                                 Tensor features_batch_cnt_tensor,
                                 Tensor grad_features_tensor, int b, int c,
                                 int m, int n, int nsample);

void roipoint_pool3d_forward(Tensor xyz, Tensor boxes3d, Tensor pts_feature,
                             Tensor pooled_features, Tensor pooled_empty_flag);

void gather_points_forward(Tensor points_tensor, Tensor idx_tensor,
                           Tensor out_tensor, int b, int c, int n, int npoints);

void gather_points_backward(Tensor grad_out_tensor, Tensor idx_tensor,
                            Tensor grad_points_tensor, int b, int c, int n,
                            int npoints);

void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha);

void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor grad_input, float gamma, float alpha);

void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha);

void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor buff, Tensor grad_input, float gamma,
                                 float alpha);

void three_interpolate_forward(Tensor points_tensor, Tensor idx_tensor,
                               Tensor weight_tensor, Tensor out_tensor, int b,
                               int c, int m, int n);

void three_interpolate_backward(Tensor grad_out_tensor, Tensor idx_tensor,
                                Tensor weight_tensor, Tensor grad_points_tensor,
                                int b, int c, int n, int m);

void three_nn_forward(Tensor unknown_tensor, Tensor known_tensor,
                      Tensor dist2_tensor, Tensor idx_tensor, int b, int n,
                      int m);

void bbox_overlaps(const Tensor bboxes1, const Tensor bboxes2, Tensor ious,
                   const int mode, const bool aligned, const int offset);

void knn_forward(Tensor xyz_tensor, Tensor new_xyz_tensor, Tensor idx_tensor,
                 Tensor dist2_tensor, int b, int n, int m, int nsample);

void iou3d_boxes_overlap_bev_forward(Tensor boxes_a, Tensor boxes_b,
                                     Tensor ans_overlap);

void iou3d_nms3d_forward(Tensor boxes, Tensor keep, Tensor keep_num,
                         float nms_overlap_thresh);

void iou3d_nms3d_normal_forward(Tensor boxes, Tensor keep, Tensor keep_num,
                                float nms_overlap_thresh);

void furthest_point_sampling_forward(Tensor points_tensor, Tensor temp_tensor,
                                     Tensor idx_tensor, int b, int n, int m);

void furthest_point_sampling_with_dist_forward(Tensor points_tensor,
                                               Tensor temp_tensor,
                                               Tensor idx_tensor, int b, int n,
                                               int m);

void masked_im2col_forward(const Tensor im, const Tensor mask_h_idx,
                           const Tensor mask_w_idx, Tensor col,
                           const int kernel_h, const int kernel_w,
                           const int pad_h, const int pad_w);

void masked_col2im_forward(const Tensor col, const Tensor mask_h_idx,
                           const Tensor mask_w_idx, Tensor im, int height,
                           int width, int channels);

void modulated_deform_conv_forward(
    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    Tensor mask, Tensor output, Tensor columns, int kernel_h, int kernel_w,
    const int stride_h, const int stride_w, const int pad_h, const int pad_w,
    const int dilation_h, const int dilation_w, const int group,
    const int deformable_group, const bool with_bias);

void modulated_deform_conv_backward(
    Tensor input, Tensor weight, Tensor bias, Tensor ones, Tensor offset,
    Tensor mask, Tensor columns, Tensor grad_input, Tensor grad_weight,
    Tensor grad_bias, Tensor grad_offset, Tensor grad_mask, Tensor grad_output,
    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
    const bool with_bias);

Tensor ms_deform_attn_forward(const Tensor &value, const Tensor &spatial_shapes,
                              const Tensor &level_start_index,
                              const Tensor &sampling_loc,
                              const Tensor &attn_weight, const int im2col_step);

void ms_deform_attn_backward(const Tensor &value, const Tensor &spatial_shapes,
                             const Tensor &level_start_index,
                             const Tensor &sampling_loc,
                             const Tensor &attn_weight,
                             const Tensor &grad_output, Tensor &grad_value,
                             Tensor &grad_sampling_loc,
                             Tensor &grad_attn_weight, const int im2col_step);

Tensor nms(Tensor boxes, Tensor scores, float iou_threshold, int offset);

Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
               float sigma, float min_score, int method, int offset);

std::vector<std::vector<int>> nms_match(Tensor dets, float iou_threshold);

std::vector<std::vector<float>> pixel_group(
    Tensor score, Tensor mask, Tensor embedding, Tensor kernel_label,
    Tensor kernel_contour, int kernel_region_num, float distance_threshold);

std::vector<std::vector<int>> contour_expand(Tensor kernel_mask,
                                             Tensor internal_kernel_label,
                                             int min_kernel_area,
                                             int kernel_num);

void roi_align_forward(Tensor input, Tensor rois, Tensor output,
                       Tensor argmax_y, Tensor argmax_x, int aligned_height,
                       int aligned_width, float spatial_scale,
                       int sampling_ratio, int pool_mode, bool aligned);

void roi_align_backward(Tensor grad_output, Tensor rois, Tensor argmax_y,
                        Tensor argmax_x, Tensor grad_input, int aligned_height,
                        int aligned_width, float spatial_scale,
                        int sampling_ratio, int pool_mode, bool aligned);

void roi_pool_forward(Tensor input, Tensor rois, Tensor output, Tensor argmax,
                      int pooled_height, int pooled_width, float spatial_scale);

void roi_pool_backward(Tensor grad_output, Tensor rois, Tensor argmax,
                       Tensor grad_input, int pooled_height, int pooled_width,
                       float spatial_scale);

void sync_bn_forward_mean(const Tensor input, Tensor mean);

void sync_bn_forward_var(const Tensor input, const Tensor mean, Tensor var);

void sync_bn_forward_output(const Tensor input, const Tensor mean,
                            const Tensor var, const Tensor weight,
                            const Tensor bias, Tensor running_mean,
                            Tensor running_var, Tensor norm, Tensor std,
                            Tensor output, float eps, float momentum,
                            int group_size);

void sync_bn_backward_param(const Tensor grad_output, const Tensor norm,
                            Tensor grad_weight, Tensor grad_bias);

void sync_bn_backward_data(const Tensor grad_output, const Tensor weight,
                           const Tensor grad_weight, const Tensor grad_bias,
                           const Tensor norm, const Tensor std,
                           Tensor grad_input);

void psamask_forward(const Tensor input, Tensor output, const int psa_type,
                     const int num_, const int h_feature, const int w_feature,
                     const int h_mask, const int w_mask, const int half_h_mask,
                     const int half_w_mask);

void psamask_backward(Tensor grad_output, const Tensor grad_input,
                      const int psa_type, const int num_, const int h_feature,
                      const int w_feature, const int h_mask, const int w_mask,
                      const int half_h_mask, const int half_w_mask);

void tin_shift_forward(Tensor input, Tensor shift, Tensor output);

void tin_shift_backward(Tensor grad_output, Tensor shift, Tensor grad_input);

void ball_query_forward(Tensor new_xyz_tensor, Tensor xyz_tensor,
                        Tensor idx_tensor, int b, int n, int m,
                        float min_radius, float max_radius, int nsample);

void stack_ball_query_forward(Tensor new_xyz_tensor, Tensor new_xyz_batch_cnt,
                              Tensor xyz_tensor, Tensor xyz_batch_cnt,
                              Tensor idx_tensor, float max_radius, int nsample);

void prroi_pool_forward(Tensor input, Tensor rois, Tensor output,
                        int pooled_height, int pooled_width,
                        float spatial_scale);

void prroi_pool_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
                         int pooled_height, int pooled_width,
                         float spatial_scale);

void prroi_pool_coor_backward(Tensor output, Tensor grad_output, Tensor input,
                              Tensor rois, Tensor grad_rois, int pooled_height,
                              int pooled_width, float spatial_scale);

template <unsigned NDim>
std::vector<torch::Tensor> get_indice_pairs_forward(
    torch::Tensor indices, int64_t batchSize,
    std::vector<int64_t> outSpatialShape, std::vector<int64_t> spatialShape,
    std::vector<int64_t> kernelSize, std::vector<int64_t> stride,
    std::vector<int64_t> padding, std::vector<int64_t> dilation,
    std::vector<int64_t> outPadding, int64_t _subM, int64_t _transpose);

template <unsigned NDim>
std::vector<Tensor> get_indice_pairs_backward(
    Tensor indices, Tensor gridOut, int64_t batchSize,
    std::vector<int64_t> outSpatialShape, std::vector<int64_t> spatialShape,
    std::vector<int64_t> kernelSize, std::vector<int64_t> stride,
    std::vector<int64_t> padding, std::vector<int64_t> dilation,
    std::vector<int64_t> outPadding, int64_t _subM, int64_t _transpose);

Tensor indice_conv_forward(Tensor features, Tensor filters, Tensor indicePairs,
                           Tensor indiceNum, int64_t numActOut,
                           int64_t _inverse, int64_t _subM);

std::vector<Tensor> indice_conv_backward(Tensor features, Tensor filters,
                                         Tensor outGrad, Tensor indicePairs,
                                         Tensor indiceNum, int64_t _inverse,
                                         int64_t _subM);

Tensor fused_indice_conv_batchnorm_forward(Tensor features, Tensor filters,
                                           Tensor bias, Tensor indicePairs,
                                           Tensor indiceNum, int64_t numActOut,
                                           int64_t _inverse, int64_t _subM);

Tensor indice_maxpool_forward(Tensor features, Tensor indicePairs,
                              Tensor indiceNum, int64_t numAct);

Tensor indice_maxpool_backward(Tensor features, Tensor outFeatures,
                               Tensor outGrad, Tensor indicePairs,
                               Tensor indiceNum);

void box_iou_rotated(const Tensor boxes1, const Tensor boxes2, Tensor ious,
                     const int mode_flag, const bool aligned);

Tensor nms_rotated(const Tensor dets, const Tensor scores, const Tensor order,
                   const Tensor dets_sorted, const Tensor labels,
                   const float iou_threshold, const int multi_label);

Tensor upfirdn2d(torch::Tensor input, torch::Tensor filter, int upx, int upy,
                 int downx, int downy, int padx0, int padx1, int pady0,
                 int pady1, bool flip, float gain);

Tensor fused_bias_leakyrelu(const Tensor &input, const Tensor &bias,
                            const Tensor &refer, int act, int grad, float alpha,
                            float scale);

void roi_align_rotated_forward(Tensor input, Tensor rois, Tensor output,
                               int pooled_height, int pooled_width,
                               float spatial_scale, int sampling_ratio,
                               bool aligned, bool clockwise);

void roi_align_rotated_backward(Tensor grad_output, Tensor rois,
                                Tensor grad_input, int pooled_height,
                                int pooled_width, float spatial_scale,
                                int sampling_ratio, bool aligned,
                                bool clockwise);

std::vector<torch::Tensor> dynamic_point_to_voxel_forward(
    const torch::Tensor &feats, const torch::Tensor &coors,
    const std::string &reduce_type);

void dynamic_point_to_voxel_backward(torch::Tensor &grad_feats,
                                     const torch::Tensor &grad_reduced_feats,
                                     const torch::Tensor &feats,
                                     const torch::Tensor &reduced_feats,
                                     const torch::Tensor &coors_idx,
                                     const torch::Tensor &reduce_count,
                                     const std::string &reduce_type);

void hard_voxelize_forward(const at::Tensor &points,
                           const at::Tensor &voxel_size,
                           const at::Tensor &coors_range, at::Tensor &voxels,
                           at::Tensor &coors, at::Tensor &num_points_per_voxel,
                           at::Tensor &voxel_num, const int max_points,
                           const int max_voxels, const int NDim,
                           const bool deterministic);

void dynamic_voxelize_forward(const at::Tensor &points,
                              const at::Tensor &voxel_size,
                              const at::Tensor &coors_range, at::Tensor &coors,
                              const int NDim);

void border_align_forward(const Tensor &input, const Tensor &boxes,
                          Tensor output, Tensor argmax_idx,
                          const int pool_size);

void border_align_backward(const Tensor &grad_output, const Tensor &boxes,
                           const Tensor &argmax_idx, Tensor grad_input,
                           const int pool_size);

void points_in_boxes_cpu_forward(Tensor boxes_tensor, Tensor pts_tensor,
                                 Tensor pts_indices_tensor);

void points_in_boxes_part_forward(Tensor boxes_tensor, Tensor pts_tensor,
                                  Tensor box_idx_of_points_tensor);

void points_in_boxes_all_forward(Tensor boxes_tensor, Tensor pts_tensor,
                                 Tensor box_idx_of_points_tensor);

void roiaware_pool3d_forward(Tensor rois, Tensor pts, Tensor pts_feature,
                             Tensor argmax, Tensor pts_idx_of_voxels,
                             Tensor pooled_features, int pool_method);

void roiaware_pool3d_backward(Tensor pts_idx_of_voxels, Tensor argmax,
                              Tensor grad_out, Tensor grad_in, int pool_method);

void correlation_forward(Tensor input1, Tensor input2, Tensor output, int kH,
                         int kW, int patchH, int patchW, int padH, int padW,
                         int dilationH, int dilationW, int dilation_patchH,
                         int dilation_patchW, int dH, int dW);

void correlation_backward(Tensor grad_output, Tensor input1, Tensor input2,
                          Tensor grad_input1, Tensor grad_input2, int kH,
                          int kW, int patchH, int patchW, int padH, int padW,
                          int dilationH, int dilationW, int dilation_patchH,
                          int dilation_patchW, int dH, int dW);

void rotated_feature_align_forward(const Tensor features,
                                   const Tensor best_bboxes, Tensor output,
                                   const float spatial_scale, const int points);

void rotated_feature_align_backward(const Tensor top_grad,
                                    const Tensor best_bboxes,
                                    Tensor bottom_grad,
                                    const float spatial_scale,
                                    const int points);

void riroi_align_rotated_forward(Tensor features, Tensor rois, Tensor output,
                                 int pooled_height, int pooled_width,
                                 float spatial_scale, int num_samples,
                                 int num_orientations, bool clockwise);

void riroi_align_rotated_backward(Tensor top_grad, Tensor rois,
                                  Tensor bottom_grad, int pooled_height,
                                  int pooled_width, float spatial_scale,
                                  int num_samples, int num_orientations,
                                  bool clockwise);

void points_in_polygons_forward(Tensor points, Tensor polygons, Tensor output);

void min_area_polygons(const Tensor pointsets, Tensor polygons);

void active_rotated_filter_forward(const Tensor input, const Tensor indices,
                                   Tensor output);

void active_rotated_filter_backward(const Tensor grad_out, const Tensor indices,
                                    Tensor grad_in);

void convex_iou(const Tensor pointsets, const Tensor polygons, Tensor ious);

void convex_giou(const Tensor pointsets, const Tensor polygons, Tensor output);

at::Tensor diff_iou_rotated_sort_vertices_forward(at::Tensor vertices,
                                                  at::Tensor mask,
                                                  at::Tensor num_valid);

void chamfer_distance_forward(const Tensor xyz1, const Tensor xyz2,
                              const Tensor dist1, const Tensor dist2,
                              const Tensor idx1, const Tensor idx);

void chamfer_distance_backward(const Tensor xyz1, const Tensor xyz2,
                               Tensor idx1, Tensor idx2, Tensor graddist1,
                               Tensor graddist2, Tensor gradxyz1,
                               Tensor gradxyz2);

Tensor bias_act(const Tensor &input, const Tensor &bias, const Tensor &xref,
                const Tensor &yref, const Tensor &dy, int grad, int dim,
                int act, float alpha, float gain, float clamp);

std::tuple<torch::Tensor, torch::Tensor, int> filtered_lrelu(
    torch::Tensor x, torch::Tensor fu, torch::Tensor fd, torch::Tensor b,
    torch::Tensor si, int up, int down, int px0, int px1, int py0, int py1,
    int sx, int sy, float gain, float slope, float clamp, bool flip_filters,
    bool writeSigns);

torch::Tensor filtered_lrelu_act_(torch::Tensor x, torch::Tensor si, int sx,
                                  int sy, float gain, float slope, float clamp,
                                  bool writeSigns);

void box_iou_quadri(const Tensor boxes1, const Tensor boxes2, Tensor ious,
                    const int mode_flag, const bool aligned);

Tensor nms_quadri(const Tensor dets, const Tensor scores, const Tensor order,
                  const Tensor dets_sorted, const float iou_threshold,
                  const int multi_label);

void bezier_align_forward(Tensor input, Tensor rois, Tensor output,
                          int aligned_height, int aligned_width,
                          float spatial_scale, int sampling_ratio,
                          bool aligned);

void bezier_align_backward(Tensor grad_output, Tensor rois, Tensor grad_input,
                           int aligned_height, int aligned_width,
                           float spatial_scale, int sampling_ratio,
                           bool aligned);

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)", py::arg("input"),
        py::arg("filter"), py::arg("upx"), py::arg("upy"), py::arg("downx"),
        py::arg("downy"), py::arg("padx0"), py::arg("padx1"), py::arg("pady0"),
        py::arg("pady1"), py::arg("flip"), py::arg("gain"));
  m.def("fused_bias_leakyrelu", &fused_bias_leakyrelu,
        "fused_bias_leakyrelu (CUDA)", py::arg("input"), py::arg("bias"),
        py::arg("empty"), py::arg("act"), py::arg("grad"), py::arg("alpha"),
        py::arg("scale"));
  m.def("gather_points_forward", &gather_points_forward,
        "gather_points_forward", py::arg("points_tensor"),
        py::arg("idx_tensor"), py::arg("out_tensor"), py::arg("b"),
        py::arg("c"), py::arg("n"), py::arg("npoints"));
  m.def("gather_points_backward", &gather_points_backward,
        "gather_points_backward", py::arg("grad_out_tensor"),
        py::arg("idx_tensor"), py::arg("grad_points_tensor"), py::arg("b"),
        py::arg("c"), py::arg("n"), py::arg("npoints"));
  m.def("get_compiler_version", &get_compiler_version, "get_compiler_version");
  m.def("get_compiling_cuda_version", &get_compiling_cuda_version,
        "get_compiling_cuda_version");
  m.def("assign_score_withk_forward", &assign_score_withk_forward,
        "assign_score_withk_forward", py::arg("points"), py::arg("centers"),
        py::arg("scores"), py::arg("knn_idx"), py::arg("output"), py::arg("B"),
        py::arg("N0"), py::arg("N1"), py::arg("M"), py::arg("K"), py::arg("O"),
        py::arg("aggregate"));
  m.def("assign_score_withk_backward", &assign_score_withk_backward,
        "assign_score_withk_backward", py::arg("grad_out"), py::arg("points"),
        py::arg("centers"), py::arg("scores"), py::arg("knn_idx"),
        py::arg("grad_points"), py::arg("grad_centers"), py::arg("grad_scores"),
        py::arg("B"), py::arg("N0"), py::arg("N1"), py::arg("M"), py::arg("K"),
        py::arg("O"), py::arg("aggregate"));
  m.def("knn_forward", &knn_forward, "knn_forward", py::arg("xyz_tensor"),
        py::arg("new_xyz_tensor"), py::arg("idx_tensor"),
        py::arg("dist2_tensor"), py::arg("b"), py::arg("n"), py::arg("m"),
        py::arg("nsample"));
  m.def("carafe_naive_forward", &carafe_naive_forward, "carafe_naive_forward",
        py::arg("features"), py::arg("masks"), py::arg("output"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_naive_backward", &carafe_naive_backward,
        "carafe_naive_backward", py::arg("top_grad"), py::arg("features"),
        py::arg("masks"), py::arg("bottom_grad"), py::arg("mask_grad"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_forward", &carafe_forward, "carafe_forward",
        py::arg("features"), py::arg("masks"), py::arg("rfeatures"),
        py::arg("routput"), py::arg("rmasks"), py::arg("output"),
        py::arg("kernel_size"), py::arg("group_size"), py::arg("scale_factor"));
  m.def("carafe_backward", &carafe_backward, "carafe_backward",
        py::arg("top_grad"), py::arg("rfeatures"), py::arg("masks"),
        py::arg("rtop_grad"), py::arg("rbottom_grad_hs"),
        py::arg("rbottom_grad"), py::arg("rmask_grad"), py::arg("bottom_grad"),
        py::arg("mask_grad"), py::arg("kernel_size"), py::arg("group_size"),
        py::arg("scale_factor"));
  m.def("deform_conv_forward", &deform_conv_forward, "deform_conv_forward",
        py::arg("input"), py::arg("weight"), py::arg("offset"),
        py::arg("output"), py::arg("columns"), py::arg("ones"), py::arg("kW"),
        py::arg("kH"), py::arg("dW"), py::arg("dH"), py::arg("padW"),
        py::arg("padH"), py::arg("dilationW"), py::arg("dilationH"),
        py::arg("group"), py::arg("deformable_group"), py::arg("im2col_step"));
  m.def("deform_conv_backward_input", &deform_conv_backward_input,
        "deform_conv_backward_input", py::arg("input"), py::arg("offset"),
        py::arg("gradOutput"), py::arg("gradInput"), py::arg("gradOffset"),
        py::arg("weight"), py::arg("columns"), py::arg("kW"), py::arg("kH"),
        py::arg("dW"), py::arg("dH"), py::arg("padW"), py::arg("padH"),
        py::arg("dilationW"), py::arg("dilationH"), py::arg("group"),
        py::arg("deformable_group"), py::arg("im2col_step"));
  m.def("deform_conv_backward_parameters", &deform_conv_backward_parameters,
        "deform_conv_backward_parameters", py::arg("input"), py::arg("offset"),
        py::arg("gradOutput"), py::arg("gradWeight"), py::arg("columns"),
        py::arg("ones"), py::arg("kW"), py::arg("kH"), py::arg("dW"),
        py::arg("dH"), py::arg("padW"), py::arg("padH"), py::arg("dilationW"),
        py::arg("dilationH"), py::arg("group"), py::arg("deformable_group"),
        py::arg("scale"), py::arg("im2col_step"));
  m.def("deform_roi_pool_forward", &deform_roi_pool_forward,
        "deform roi pool forward", py::arg("input"), py::arg("rois"),
        py::arg("offset"), py::arg("output"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("gamma"));
  m.def("deform_roi_pool_backward", &deform_roi_pool_backward,
        "deform roi pool backward", py::arg("grad_output"), py::arg("input"),
        py::arg("rois"), py::arg("offset"), py::arg("grad_input"),
        py::arg("grad_offset"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("gamma"));
  m.def("roipoint_pool3d_forward", &roipoint_pool3d_forward,
        "roipoint_pool3d_forward", py::arg("xyz"), py::arg("boxes3d"),
        py::arg("pts_feature"), py::arg("pooled_features"),
        py::arg("pooled_empty_flag"));
  m.def("sigmoid_focal_loss_forward", &sigmoid_focal_loss_forward,
        "sigmoid_focal_loss_forward ", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("output"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("sigmoid_focal_loss_backward", &sigmoid_focal_loss_backward,
        "sigmoid_focal_loss_backward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("grad_input"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("softmax_focal_loss_forward", &softmax_focal_loss_forward,
        "softmax_focal_loss_forward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("output"), py::arg("gamma"),
        py::arg("alpha"));
  m.def("softmax_focal_loss_backward", &softmax_focal_loss_backward,
        "softmax_focal_loss_backward", py::arg("input"), py::arg("target"),
        py::arg("weight"), py::arg("buff"), py::arg("grad_input"),
        py::arg("gamma"), py::arg("alpha"));
  m.def("three_interpolate_forward", &three_interpolate_forward,
        "three_interpolate_forward", py::arg("points_tensor"),
        py::arg("idx_tensor"), py::arg("weight_tensor"), py::arg("out_tensor"),
        py::arg("b"), py::arg("c"), py::arg("m"), py::arg("n"));
  m.def("three_interpolate_backward", &three_interpolate_backward,
        "three_interpolate_backward", py::arg("grad_out_tensor"),
        py::arg("idx_tensor"), py::arg("weight_tensor"),
        py::arg("grad_points_tensor"), py::arg("b"), py::arg("c"), py::arg("n"),
        py::arg("m"));
  m.def("three_nn_forward", &three_nn_forward, "three_nn_forward",
        py::arg("unknown_tensor"), py::arg("known_tensor"),
        py::arg("dist2_tensor"), py::arg("idx_tensor"), py::arg("b"),
        py::arg("n"), py::arg("m"));
  m.def("bbox_overlaps", &bbox_overlaps, "bbox_overlaps", py::arg("bboxes1"),
        py::arg("bboxes2"), py::arg("ious"), py::arg("mode"),
        py::arg("aligned"), py::arg("offset"));
  m.def("group_points_forward", &group_points_forward, "group_points_forward",
        py::arg("points_tensor"), py::arg("idx_tensor"), py::arg("out_tensor"),
        py::arg("b"), py::arg("c"), py::arg("n"), py::arg("npoints"),
        py::arg("nsample"));
  m.def("group_points_backward", &group_points_backward,
        "group_points_backward", py::arg("grad_out_tensor"),
        py::arg("idx_tensor"), py::arg("grad_points_tensor"), py::arg("b"),
        py::arg("c"), py::arg("n"), py::arg("npoints"), py::arg("nsample"));
  m.def("stack_group_points_forward", &stack_group_points_forward,
        "stack_group_points_forward", py::arg("features_tensor"),
        py::arg("features_batch_cnt_tensor"), py::arg("idx_tensor"),
        py::arg("idx_batch_cnt_tensor"), py::arg("out_tensor"), py::arg("b"),
        py::arg("c"), py::arg("m"), py::arg("nsample"));
  m.def("stack_group_points_backward", &stack_group_points_backward,
        "stack_group_points_backward", py::arg("grad_out_tensor"),
        py::arg("idx_tensor"), py::arg("idx_batch_cnt_tensor"),
        py::arg("features_batch_cnt_tensor"), py::arg("grad_features_tensor"),
        py::arg("b"), py::arg("c"), py::arg("m"), py::arg("n"),
        py::arg("nsample"));
  m.def("knn_forward", &knn_forward, "knn_forward", py::arg("b"), py::arg("n"),
        py::arg("m"), py::arg("nsample"), py::arg("xyz_tensor"),
        py::arg("new_xyz_tensor"), py::arg("idx_tensor"),
        py::arg("dist2_tensor"));
  m.def("iou3d_boxes_overlap_bev_forward", &iou3d_boxes_overlap_bev_forward,
        "iou3d_boxes_overlap_bev_forward", py::arg("boxes_a"),
        py::arg("boxes_b"), py::arg("ans_iou"));
  m.def("iou3d_nms3d_forward", &iou3d_nms3d_forward, "iou3d_nms3d_forward",
        py::arg("boxes"), py::arg("keep"), py::arg("num_out"),
        py::arg("nms_overlap_thresh"));
  m.def("iou3d_nms3d_normal_forward", &iou3d_nms3d_normal_forward,
        "iou3d_nms3d_normal_forward", py::arg("boxes"), py::arg("keep"),
        py::arg("num_out"), py::arg("nms_overlap_thresh"));
  m.def("furthest_point_sampling_forward", &furthest_point_sampling_forward,
        "furthest_point_sampling_forward", py::arg("points_tensor"),
        py::arg("temp_tensor"), py::arg("idx_tensor"), py::arg("b"),
        py::arg("n"), py::arg("m"));
  m.def("furthest_point_sampling_with_dist_forward",
        &furthest_point_sampling_with_dist_forward,
        "furthest_point_sampling_with_dist_forward", py::arg("points_tensor"),
        py::arg("temp_tensor"), py::arg("idx_tensor"), py::arg("b"),
        py::arg("n"), py::arg("m"));
  m.def("masked_im2col_forward", &masked_im2col_forward,
        "masked_im2col_forward", py::arg("im"), py::arg("mask_h_idx"),
        py::arg("mask_w_idx"), py::arg("col"), py::arg("kernel_h"),
        py::arg("kernel_w"), py::arg("pad_h"), py::arg("pad_w"));
  m.def("masked_col2im_forward", &masked_col2im_forward,
        "masked_col2im_forward", py::arg("col"), py::arg("mask_h_idx"),
        py::arg("mask_w_idx"), py::arg("im"), py::arg("height"),
        py::arg("width"), py::arg("channels"));
  m.def("modulated_deform_conv_forward", &modulated_deform_conv_forward,
        "modulated deform conv forward", py::arg("input"), py::arg("weight"),
        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
        py::arg("output"), py::arg("columns"), py::arg("kernel_h"),
        py::arg("kernel_w"), py::arg("stride_h"), py::arg("stride_w"),
        py::arg("pad_h"), py::arg("pad_w"), py::arg("dilation_h"),
        py::arg("dilation_w"), py::arg("group"), py::arg("deformable_group"),
        py::arg("with_bias"));
  m.def("modulated_deform_conv_backward", &modulated_deform_conv_backward,
        "modulated deform conv backward", py::arg("input"), py::arg("weight"),
        py::arg("bias"), py::arg("ones"), py::arg("offset"), py::arg("mask"),
        py::arg("columns"), py::arg("grad_input"), py::arg("grad_weight"),
        py::arg("grad_bias"), py::arg("grad_offset"), py::arg("grad_mask"),
        py::arg("grad_output"), py::arg("kernel_h"), py::arg("kernel_w"),
        py::arg("stride_h"), py::arg("stride_w"), py::arg("pad_h"),
        py::arg("pad_w"), py::arg("dilation_h"), py::arg("dilation_w"),
        py::arg("group"), py::arg("deformable_group"), py::arg("with_bias"));
  m.def("nms", &nms, "nms (CPU/CUDA) ", py::arg("boxes"), py::arg("scores"),
        py::arg("iou_threshold"), py::arg("offset"));
  m.def("softnms", &softnms, "softnms (CPU) ", py::arg("boxes"),
        py::arg("scores"), py::arg("dets"), py::arg("iou_threshold"),
        py::arg("sigma"), py::arg("min_score"), py::arg("method"),
        py::arg("offset"));
  m.def("nms_match", &nms_match, "nms_match (CPU) ", py::arg("dets"),
        py::arg("iou_threshold"));
  m.def("pixel_group", &pixel_group, "pixel group (CPU) ", py::arg("score"),
        py::arg("mask"), py::arg("embedding"), py::arg("kernel_label"),
        py::arg("kernel_contour"), py::arg("kernel_region_label"),
        py::arg("distance_threshold"));
  m.def("contour_expand", &contour_expand, "contour exapnd (CPU) ",
        py::arg("kernel_mask"), py::arg("internal_kernel_label"),
        py::arg("min_kernel_area"), py::arg("kernel_num"));
  m.def("roi_align_forward", &roi_align_forward, "roi_align forward",
        py::arg("input"), py::arg("rois"), py::arg("output"),
        py::arg("argmax_y"), py::arg("argmax_x"), py::arg("aligned_height"),
        py::arg("aligned_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
  m.def("roi_align_backward", &roi_align_backward, "roi_align backward",
        py::arg("grad_output"), py::arg("rois"), py::arg("argmax_y"),
        py::arg("argmax_x"), py::arg("grad_input"), py::arg("aligned_height"),
        py::arg("aligned_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("pool_mode"), py::arg("aligned"));
  m.def("roi_pool_forward", &roi_pool_forward, "roi_pool forward",
        py::arg("input"), py::arg("rois"), py::arg("output"), py::arg("argmax"),
        py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"));
  m.def("roi_pool_backward", &roi_pool_backward, "roi_pool backward",
        py::arg("grad_output"), py::arg("rois"), py::arg("argmax"),
        py::arg("grad_input"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"));
  m.def("sync_bn_forward_mean", &sync_bn_forward_mean, "sync_bn forward_mean",
        py::arg("input"), py::arg("mean"));
  m.def("sync_bn_forward_var", &sync_bn_forward_var, "sync_bn forward_var",
        py::arg("input"), py::arg("mean"), py::arg("var"));
  m.def("sync_bn_forward_output", &sync_bn_forward_output,
        "sync_bn forward_output", py::arg("input"), py::arg("mean"),
        py::arg("var"), py::arg("weight"), py::arg("bias"),
        py::arg("running_mean"), py::arg("running_var"), py::arg("norm"),
        py::arg("std"), py::arg("output"), py::arg("eps"), py::arg("momentum"),
        py::arg("group_size"));
  m.def("sync_bn_backward_param", &sync_bn_backward_param,
        "sync_bn backward_param", py::arg("grad_output"), py::arg("norm"),
        py::arg("grad_weight"), py::arg("grad_bias"));
  m.def("sync_bn_backward_data", &sync_bn_backward_data,
        "sync_bn backward_data", py::arg("grad_output"), py::arg("weight"),
        py::arg("grad_weight"), py::arg("grad_bias"), py::arg("norm"),
        py::arg("std"), py::arg("grad_input"));
  m.def("get_indice_pairs_2d_forward", &get_indice_pairs_forward<2>,
        "get_indice_pairs_2d_forward", py::arg("indices"), py::arg("batchSize"),
        py::arg("outSpatialShape"), py::arg("spatialShape"),
        py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
        py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
        py::arg("_transpose"));
  m.def("get_indice_pairs_3d_forward", &get_indice_pairs_forward<3>,
        "get_indice_pairs_3d_forward", py::arg("indices"), py::arg("batchSize"),
        py::arg("outSpatialShape"), py::arg("spatialShape"),
        py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
        py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
        py::arg("_transpose"));
  m.def("get_indice_pairs_4d_forward", &get_indice_pairs_forward<4>,
        "get_indice_pairs_4d_forward", py::arg("indices"), py::arg("batchSize"),
        py::arg("outSpatialShape"), py::arg("spatialShape"),
        py::arg("kernelSize"), py::arg("stride"), py::arg("padding"),
        py::arg("dilation"), py::arg("outPadding"), py::arg("_subM"),
        py::arg("_transpose"));
  m.def("get_indice_pairs_2d_backward", &get_indice_pairs_backward<2>,
        "get_indice_pairs_2d_backward", py::arg("indices"), py::arg("gridOut"),
        py::arg("batchSize"), py::arg("outSpatialShape"),
        py::arg("spatialShape"), py::arg("kernelSize"), py::arg("stride"),
        py::arg("padding"), py::arg("dilation"), py::arg("outPadding"),
        py::arg("_subM"), py::arg("_transpose"));
  m.def("get_indice_pairs_3d_backward", &get_indice_pairs_backward<3>,
        "get_indice_pairs_3d_backward", py::arg("indices"), py::arg("gridOut"),
        py::arg("batchSize"), py::arg("outSpatialShape"),
        py::arg("spatialShape"), py::arg("kernelSize"), py::arg("stride"),
        py::arg("padding"), py::arg("dilation"), py::arg("outPadding"),
        py::arg("_subM"), py::arg("_transpose"));
  m.def("indice_conv_forward", &indice_conv_forward, "indice_conv_forward",
        py::arg("features"), py::arg("filters"), py::arg("indicePairs"),
        py::arg("indiceNum"), py::arg("numActOut"), py::arg("_inverse"),
        py::arg("_subM"));
  m.def("indice_conv_backward", &indice_conv_backward, "indice_conv_backward",
        py::arg("features"), py::arg("filters"), py::arg("outGrad"),
        py::arg("indicePairs"), py::arg("indiceNum"), py::arg("_inverse"),
        py::arg("_subM"));
  m.def("fused_indice_conv_forward", &fused_indice_conv_batchnorm_forward,
        "fused_indice_conv_forward", py::arg("features"), py::arg("filters"),
        py::arg("bias"), py::arg("indicePairs"), py::arg("indiceNum"),
        py::arg("numActOut"), py::arg("_inverse"), py::arg("_subM"));
  m.def("indice_maxpool_forward", &indice_maxpool_forward,
        "indice_maxpool_forward", py::arg("features"), py::arg("indicePairs"),
        py::arg("indiceNum"), py::arg("numAct"));
  m.def("indice_maxpool_backward", &indice_maxpool_backward,
        "indice_maxpool_backward", py::arg("features"), py::arg("outFeatures"),
        py::arg("outGrad"), py::arg("indicePairs"), py::arg("indiceNum"));
  m.def("psamask_forward", &psamask_forward, "PSAMASK forward (CPU/CUDA)",
        py::arg("input"), py::arg("output"), py::arg("psa_type"),
        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
        py::arg("half_w_mask"));
  m.def("psamask_backward", &psamask_backward, "PSAMASK backward (CPU/CUDA)",
        py::arg("grad_output"), py::arg("grad_input"), py::arg("psa_type"),
        py::arg("num_"), py::arg("h_feature"), py::arg("w_feature"),
        py::arg("h_mask"), py::arg("w_mask"), py::arg("half_h_mask"),
        py::arg("half_w_mask"));
  m.def("tin_shift_forward", &tin_shift_forward, "tin_shift forward",
        py::arg("input"), py::arg("shift"), py::arg("output"));
  m.def("tin_shift_backward", &tin_shift_backward, "tin_shift backward",
        py::arg("grad_output"), py::arg("shift"), py::arg("grad_input"));
  m.def("box_iou_rotated", &box_iou_rotated, "IoU for rotated boxes",
        py::arg("boxes1"), py::arg("boxes2"), py::arg("ious"),
        py::arg("mode_flag"), py::arg("aligned"));
  m.def("nms_rotated", &nms_rotated, "NMS for rotated boxes", py::arg("dets"),
        py::arg("scores"), py::arg("order"), py::arg("dets_sorted"),
        py::arg("labels"), py::arg("iou_threshold"), py::arg("multi_label"));
  m.def("ball_query_forward", &ball_query_forward, "ball_query_forward",
        py::arg("new_xyz_tensor"), py::arg("xyz_tensor"), py::arg("idx_tensor"),
        py::arg("b"), py::arg("n"), py::arg("m"), py::arg("min_radius"),
        py::arg("max_radius"), py::arg("nsample"));
  m.def("stack_ball_query_forward", &stack_ball_query_forward,
        "stack_ball_query_forward", py::arg("new_xyz_tensor"),
        py::arg("new_xyz_batch_cnt"), py::arg("xyz_tensor"),
        py::arg("xyz_batch_cnt"), py::arg("idx_tensor"), py::arg("max_radius"),
        py::arg("nsample"));
  m.def("roi_align_rotated_forward", &roi_align_rotated_forward,
        "roi_align_rotated forward", py::arg("input"), py::arg("rois"),
        py::arg("output"), py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"), py::arg("sampling_ratio"), py::arg("aligned"),
        py::arg("clockwise"));
  m.def("roi_align_rotated_backward", &roi_align_rotated_backward,
        "roi_align_rotated backward", py::arg("rois"), py::arg("grad_input"),
        py::arg("grad_output"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("aligned"), py::arg("clockwise"));
  m.def("dynamic_point_to_voxel_forward", &dynamic_point_to_voxel_forward,
        "dynamic_point_to_voxel_forward", py::arg("feats"), py::arg("coors"),
        py::arg("reduce_type"));
  m.def("dynamic_point_to_voxel_backward", &dynamic_point_to_voxel_backward,
        "dynamic_point_to_voxel_backward", py::arg("grad_feats"),
        py::arg("grad_reduced_feats"), py::arg("feats"),
        py::arg("reduced_feats"), py::arg("coors_idx"), py::arg("reduce_count"),
        py::arg("reduce_type"));
  m.def("hard_voxelize_forward", &hard_voxelize_forward,
        "hard_voxelize_forward", py::arg("points"), py::arg("voxel_size"),
        py::arg("coors_range"), py::arg("voxels"), py::arg("coors"),
        py::arg("num_points_per_voxel"), py::arg("voxel_num"),
        py::arg("max_points"), py::arg("max_voxels"), py::arg("NDim"),
        py::arg("deterministic"));
  m.def("dynamic_voxelize_forward", &dynamic_voxelize_forward,
        "dynamic_voxelize_forward", py::arg("points"), py::arg("voxel_size"),
        py::arg("coors_range"), py::arg("coors"), py::arg("NDim"));
  m.def("ms_deform_attn_forward", &ms_deform_attn_forward,
        "forward function of multi-scale deformable attention",
        py::arg("value"), py::arg("value_spatial_shapes"),
        py::arg("value_level_start_index"), py::arg("sampling_locations"),
        py::arg("attention_weights"), py::arg("im2col_step"));
  m.def("ms_deform_attn_backward", &ms_deform_attn_backward,
        "backward function of multi-scale deformable attention",
        py::arg("value"), py::arg("value_spatial_shapes"),
        py::arg("value_level_start_index"), py::arg("sampling_locations"),
        py::arg("attention_weights"), py::arg("grad_output"),
        py::arg("grad_value"), py::arg("grad_sampling_loc"),
        py::arg("grad_attn_weight"), py::arg("im2col_step"));
  m.def("border_align_forward", &border_align_forward,
        "forward function of border_align", py::arg("input"), py::arg("boxes"),
        py::arg("output"), py::arg("argmax_idx"), py::arg("pool_size"));
  m.def("border_align_backward", &border_align_backward,
        "backward function of border_align", py::arg("grad_output"),
        py::arg("boxes"), py::arg("argmax_idx"), py::arg("grad_input"),
        py::arg("pool_size"));
  m.def("correlation_forward", &correlation_forward, "Correlation forward",
        py::arg("input1"), py::arg("input2"), py::arg("output"), py::arg("kH"),
        py::arg("kW"), py::arg("patchH"), py::arg("patchW"), py::arg("padH"),
        py::arg("padW"), py::arg("dilationH"), py::arg("dilationW"),
        py::arg("dilation_patchH"), py::arg("dilation_patchW"), py::arg("dH"),
        py::arg("dW"));
  m.def("correlation_backward", &correlation_backward, "Correlation backward",
        py::arg("grad_output"), py::arg("input1"), py::arg("input2"),
        py::arg("grad_input1"), py::arg("grad_input2"), py::arg("kH"),
        py::arg("kW"), py::arg("patchH"), py::arg("patchW"), py::arg("padH"),
        py::arg("padW"), py::arg("dilationH"), py::arg("dilationW"),
        py::arg("dilation_patchH"), py::arg("dilation_patchW"), py::arg("dH"),
        py::arg("dW"));
  m.def("points_in_boxes_cpu_forward", &points_in_boxes_cpu_forward,
        "points_in_boxes_cpu_forward", py::arg("boxes_tensor"),
        py::arg("pts_tensor"), py::arg("pts_indices_tensor"));
  m.def("points_in_boxes_part_forward", &points_in_boxes_part_forward,
        "points_in_boxes_part_forward", py::arg("boxes_tensor"),
        py::arg("pts_tensor"), py::arg("box_idx_of_points_tensor"));
  m.def("points_in_boxes_all_forward", &points_in_boxes_all_forward,
        "points_in_boxes_all_forward", py::arg("boxes_tensor"),
        py::arg("pts_tensor"), py::arg("box_idx_of_points_tensor"));
  m.def("roiaware_pool3d_forward", &roiaware_pool3d_forward,
        "roiaware_pool3d_forward", py::arg("rois"), py::arg("pts"),
        py::arg("pts_feature"), py::arg("argmax"), py::arg("pts_idx_of_voxels"),
        py::arg("pooled_features"), py::arg("pool_method"));
  m.def("roiaware_pool3d_backward", &roiaware_pool3d_backward,
        "roiaware_pool3d_backward", py::arg("pts_idx_of_voxels"),
        py::arg("argmax"), py::arg("grad_out"), py::arg("grad_in"),
        py::arg("pool_method"));
  m.def("rotated_feature_align_forward", &rotated_feature_align_forward,
        "Feature Refine forward (CUDA)", py::arg("features"),
        py::arg("best_bboxes"), py::arg("output"), py::arg("spatial_scale"),
        py::arg("points"));
  m.def("rotated_feature_align_backward", &rotated_feature_align_backward,
        "Feature Refine backward (CUDA)", py::arg("top_grad"),
        py::arg("best_bboxes"), py::arg("bottom_grad"),
        py::arg("spatial_scale"), py::arg("points"));
  m.def("riroi_align_rotated_forward", &riroi_align_rotated_forward,
        "riroi_align_rotated forward", py::arg("features"), py::arg("rois"),
        py::arg("output"), py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"), py::arg("num_samples"),
        py::arg("num_orientations"), py::arg("clockwise"));
  m.def("riroi_align_rotated_backward", &riroi_align_rotated_backward,
        "riroi_align_rotated backward", py::arg("top_grad"), py::arg("rois"),
        py::arg("bottom_grad"), py::arg("pooled_height"),
        py::arg("pooled_width"), py::arg("spatial_scale"),
        py::arg("num_samples"), py::arg("num_orientations"),
        py::arg("clockwise"));
  m.def("points_in_polygons_forward", &points_in_polygons_forward,
        "points_in_polygons_forward", py::arg("points"), py::arg("polygons"),
        py::arg("output"));
  m.def("min_area_polygons", &min_area_polygons, "min_area_polygons",
        py::arg("pointsets"), py::arg("polygons"));
  m.def("active_rotated_filter_forward", &active_rotated_filter_forward,
        "active_rotated_filter_forward", py::arg("input"), py::arg("indices"),
        py::arg("output"));
  m.def("active_rotated_filter_backward", &active_rotated_filter_backward,
        "active_rotated_filter_backward", py::arg("grad_out"),
        py::arg("indices"), py::arg("grad_in"));
  m.def("convex_iou", &convex_iou, "convex_iou", py::arg("pointsets"),
        py::arg("polygons"), py::arg("ious"));
  m.def("convex_giou", &convex_giou, "convex_giou", py::arg("pointsets"),
        py::arg("polygons"), py::arg("output"));
  m.def("diff_iou_rotated_sort_vertices_forward",
        &diff_iou_rotated_sort_vertices_forward,
        "diff_iou_rotated_sort_vertices_forward", py::arg("vertices"),
        py::arg("mask"), py::arg("num_valid"));
  m.def("chamfer_distance_forward", &chamfer_distance_forward,
        "chamfer_distance_forward", py::arg("xyz1"), py::arg("xyz2"),
        py::arg("dist1"), py::arg("dist2"), py::arg("idx1"), py::arg("idx2"));
  m.def("chamfer_distance_backward", &chamfer_distance_backward,
        "chamfer_distance_backward", py::arg("xyz1"), py::arg("xyz2"),
        py::arg("idx1"), py::arg("idx2"), py::arg("graddist1"),
        py::arg("graddist2"), py::arg("gradxyz1"), py::arg("gradxyz2"));
  m.def("prroi_pool_forward", &prroi_pool_forward, "prroi_pool forward",
        py::arg("input"), py::arg("rois"), py::arg("output"),
        py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"));
  m.def("prroi_pool_backward", &prroi_pool_backward, "prroi_pool_backward",
        py::arg("grad_output"), py::arg("rois"), py::arg("grad_input"),
        py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"));
  m.def("prroi_pool_coor_backward", &prroi_pool_coor_backward,
        "prroi_pool_coor_backward", py::arg("output"), py::arg("grad_output"),
        py::arg("input"), py::arg("rois"), py::arg("grad_rois"),
        py::arg("pooled_height"), py::arg("pooled_width"),
        py::arg("spatial_scale"));
  m.def("bias_act", &bias_act, "bias_act (CUDA)", py::arg("input"),
        py::arg("bias"), py::arg("xref"), py::arg("yref"), py::arg("dy"),
        py::arg("grad"), py::arg("dim"), py::arg("act"), py::arg("alpha"),
        py::arg("gain"), py::arg("clamp"));
  m.def("filtered_lrelu", &filtered_lrelu, "filtered_lrelu (CUDA)",
        py::arg("x"), py::arg("fu"), py::arg("fd"), py::arg("b"), py::arg("si"),
        py::arg("up"), py::arg("down"), py::arg("px0"), py::arg("px1"),
        py::arg("py0"), py::arg("py1"), py::arg("sx"), py::arg("sy"),
        py::arg("gain"), py::arg("slope"), py::arg("clamp"),
        py::arg("flip_filters"), py::arg("writeSigns"));
  m.def("filtered_lrelu_act_", &filtered_lrelu_act_,
        "filtered_lrelu_act_ (CUDA)", py::arg("x"), py::arg("si"),
        py::arg("sx"), py::arg("sy"), py::arg("gain"), py::arg("slope"),
        py::arg("clamp"), py::arg("writeSigns"));
  m.def("box_iou_quadri", &box_iou_quadri, "IoU for quadrilateral boxes",
        py::arg("boxes1"), py::arg("boxes2"), py::arg("ious"),
        py::arg("mode_flag"), py::arg("aligned"));
  m.def("nms_quadri", &nms_quadri, "NMS for quadrilateral boxes",
        py::arg("dets"), py::arg("scores"), py::arg("order"),
        py::arg("dets_sorted"), py::arg("iou_threshold"),
        py::arg("multi_label"));
  m.def("bezier_align_forward", &bezier_align_forward, "bezier_align forward",
        py::arg("input"), py::arg("rois"), py::arg("output"),
        py::arg("aligned_height"), py::arg("aligned_width"),
        py::arg("spatial_scale"), py::arg("sampling_ratio"),
        py::arg("aligned"));
  m.def("bezier_align_backward", &bezier_align_backward,
        "bezier_align backward", py::arg("grad_output"), py::arg("rois"),
        py::arg("grad_input"), py::arg("aligned_height"),
        py::arg("aligned_width"), py::arg("spatial_scale"),
        py::arg("sampling_ratio"), py::arg("aligned"));
}