File size: 5,820 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright (c) OpenMMLab. All rights reserved
#include "pytorch_cpp_helper.hpp"
#include "pytorch_device_registry.hpp"
#ifdef MMCV_WITH_DIOPI
#include <diopi/diopirt.h>
#include <diopi/functions.h>
#include <diopi/functions_mmcv.h>

#include "csrc_dipu/diopirt/diopirt_impl.h"

using dipu::diopi_helper::toDiopiScalar;
using dipu::diopi_helper::toDiopiTensorHandle;
#endif

void sigmoid_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
                                     Tensor output, float gamma, float alpha) {
  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_forward_impl, input, target, weight,
                       output, gamma, alpha);
}

void sigmoid_focal_loss_backward_impl(Tensor input, Tensor target,
                                      Tensor weight, Tensor grad_input,
                                      float gamma, float alpha) {
  DISPATCH_DEVICE_IMPL(sigmoid_focal_loss_backward_impl, input, target, weight,
                       grad_input, gamma, alpha);
}

void softmax_focal_loss_forward_impl(Tensor input, Tensor target, Tensor weight,
                                     Tensor output, float gamma, float alpha) {
  DISPATCH_DEVICE_IMPL(softmax_focal_loss_forward_impl, input, target, weight,
                       output, gamma, alpha);
}

void softmax_focal_loss_backward_impl(Tensor input, Tensor target,
                                      Tensor weight, Tensor buff,
                                      Tensor grad_input, float gamma,
                                      float alpha) {
  DISPATCH_DEVICE_IMPL(softmax_focal_loss_backward_impl, input, target, weight,
                       buff, grad_input, gamma, alpha);
}

#ifdef MMCV_WITH_DIOPI
void sigmoid_focal_loss_forward_diopi(Tensor input, Tensor target,
                                      Tensor weight, Tensor output, float gamma,
                                      float alpha) {
  auto input_p = toDiopiTensorHandle(input);
  diopiDevice_t device;
  diopiGetTensorDevice(input_p, &device);
  if (device == diopi_host) {
    sigmoid_focal_loss_forward_impl(input, target, weight, output, gamma,
                                    alpha);
    return;
  }
  diopiContext ctx(dipu::getCurrentDIPUStream().rawstream());
  diopiContextHandle_t ch = &ctx;
  auto target_p = toDiopiTensorHandle(target);
  auto weight_p = toDiopiTensorHandle(weight);
  auto output_p = toDiopiTensorHandle(output);
  if (reinterpret_cast<void *>(diopiSigmoidFocalLossMmcv) != nullptr) {
    auto ret = diopiSigmoidFocalLossMmcv(ch, output_p, input_p, target_p,
                                         weight_p, gamma, alpha);
    if (ret == diopiSuccess) return;
  }
  LOG(WARNING)
      << "Fallback to cpu: mmcv ext op sigmoid_focal_loss_forward_impl";
  auto input_cpu = input.cpu();
  auto target_cpu = target.cpu();
  auto weight_cpu = weight.cpu();
  auto output_cpu = output.cpu();
  sigmoid_focal_loss_forward_impl(input_cpu, target_cpu, weight_cpu, output_cpu,
                                  gamma, alpha);
  output.copy_(output_cpu);
  return;
}

void sigmoid_focal_loss_backward_diopi(Tensor input, Tensor target,
                                       Tensor weight, Tensor grad_input,
                                       float gamma, float alpha) {
  auto input_p = toDiopiTensorHandle(input);
  diopiDevice_t device;
  diopiGetTensorDevice(input_p, &device);
  if (device == diopi_host) {
    sigmoid_focal_loss_backward_impl(input, target, weight, grad_input, gamma,
                                     alpha);
    return;
  }
  diopiContext ctx(dipu::getCurrentDIPUStream().rawstream());
  diopiContextHandle_t ch = &ctx;
  auto target_p = toDiopiTensorHandle(target);
  auto weight_p = toDiopiTensorHandle(weight);
  auto grad_input_p = toDiopiTensorHandle(grad_input);
  if (reinterpret_cast<void *>(diopiSigmoidFocalLossBackwardMmcv) != nullptr) {
    auto ret = diopiSigmoidFocalLossBackwardMmcv(
        ch, grad_input_p, input_p, target_p, weight_p, gamma, alpha);
    if (ret == diopiSuccess) return;
  }
  LOG(WARNING)
      << "Fallback to cpu: mmcv ext op sigmoid_focal_loss_forward_impl";
  auto input_cpu = input.cpu();
  auto target_cpu = target.cpu();
  auto weight_cpu = weight.cpu();
  auto grad_input_cpu = grad_input.cpu();
  sigmoid_focal_loss_backward_impl(input_cpu, target_cpu, weight_cpu,
                                   grad_input_cpu, gamma, alpha);
  grad_input.copy_(grad_input_cpu);
  return;
}
#endif

void sigmoid_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha) {
#ifdef MMCV_WITH_DIOPI
  sigmoid_focal_loss_forward_diopi(input, target, weight, output, gamma, alpha);
#else
  sigmoid_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
#endif
}

void sigmoid_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor grad_input, float gamma, float alpha) {
#ifdef MMCV_WITH_DIOPI
  sigmoid_focal_loss_backward_diopi(input, target, weight, grad_input, gamma,
                                    alpha);
#else
  sigmoid_focal_loss_backward_impl(input, target, weight, grad_input, gamma,
                                   alpha);
#endif
}

void softmax_focal_loss_forward(Tensor input, Tensor target, Tensor weight,
                                Tensor output, float gamma, float alpha) {
  softmax_focal_loss_forward_impl(input, target, weight, output, gamma, alpha);
}

void softmax_focal_loss_backward(Tensor input, Tensor target, Tensor weight,
                                 Tensor buff, Tensor grad_input, float gamma,
                                 float alpha) {
  softmax_focal_loss_backward_impl(input, target, weight, buff, grad_input,
                                   gamma, alpha);
}