Spaces:
Running
Running
File size: 9,213 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
// Copyright (c) OpenMMLab. All rights reserved
// Modified from
// https://github.com/hszhao/semseg/blob/master/lib/psa/src
#include "pytorch_cpp_helper.hpp"
#include "pytorch_device_registry.hpp"
#ifndef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef max
#define max(a, b) (((a) > (b)) ? (a) : (b))
#endif
void psamask_collect_forward(const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask, const Tensor mask_data,
Tensor buffer_data) {
for (int n = 0; n < num_; n++) {
for (int h = 0; h < h_feature; h++) {
for (int w = 0; w < w_feature; w++) {
// effective mask region : [hstart, hend) x [wstart, wend) with
// mask-indexed
const int hstart = max(0, half_h_mask - h);
const int hend = min(h_mask, h_feature + half_h_mask - h);
const int wstart = max(0, half_w_mask - w);
const int wend = min(w_mask, w_feature + half_w_mask - w);
// (hidx, widx ) with mask-indexed
// (hidx + h - half_h_mask, widx + w - half_w_mask) with
// feature-indexed
for (int hidx = hstart; hidx < hend; hidx++) {
for (int widx = wstart; widx < wend; widx++) {
buffer_data.view({-1})[(n * h_feature * w_feature +
(hidx + h - half_h_mask) * w_feature +
(widx + w - half_w_mask)) *
h_feature * w_feature +
h * w_feature + w] =
mask_data.view(
{-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
h_feature +
h) *
w_feature +
w];
}
}
}
}
}
}
void psamask_distribute_forward(const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask, const Tensor mask_data,
Tensor buffer_data) {
for (int n = 0; n < num_; n++) {
for (int h = 0; h < h_feature; h++) {
for (int w = 0; w < w_feature; w++) {
// effective mask region : [hstart, hend) x [wstart, wend) with
// mask-indexed
const int hstart = max(0, half_h_mask - h);
const int hend = min(h_mask, h_feature + half_h_mask - h);
const int wstart = max(0, half_w_mask - w);
const int wend = min(w_mask, w_feature + half_w_mask - w);
// (hidx, widx ) with mask-indexed
// (hidx + h - half_h_mask, widx + w - half_w_mask) with
// feature-indexed
for (int hidx = hstart; hidx < hend; hidx++) {
for (int widx = wstart; widx < wend; widx++) {
buffer_data.view(
{-1})[(n * h_feature * w_feature + h * w_feature + w) *
h_feature * w_feature +
(hidx + h - half_h_mask) * w_feature +
(widx + w - half_w_mask)] =
mask_data.view(
{-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
h_feature +
h) *
w_feature +
w];
}
}
}
}
}
}
void psamask_collect_backward(const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask, const Tensor buffer_diff,
Tensor mask_diff) {
for (int n = 0; n < num_; n++) {
for (int h = 0; h < h_feature; h++) {
for (int w = 0; w < w_feature; w++) {
// effective mask region : [hstart, hend) x [wstart, wend) with
// mask-indexed
const int hstart = max(0, half_h_mask - h);
const int hend = min(h_mask, h_feature + half_h_mask - h);
const int wstart = max(0, half_w_mask - w);
const int wend = min(w_mask, w_feature + half_w_mask - w);
// (hidx, widx ) with mask-indexed
// (hidx + h - half_h_mask, widx + w - half_w_mask) with
// feature-indexed
for (int hidx = hstart; hidx < hend; hidx++) {
for (int widx = wstart; widx < wend; widx++) {
mask_diff.view({-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
h_feature +
h) *
w_feature +
w] =
buffer_diff.view({-1})[(n * h_feature * w_feature +
(hidx + h - half_h_mask) * w_feature +
(widx + w - half_w_mask)) *
h_feature * w_feature +
h * w_feature + w];
}
}
}
}
}
}
void psamask_distribute_backward(const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask,
const Tensor buffer_diff, Tensor mask_diff) {
for (int n = 0; n < num_; n++) {
for (int h = 0; h < h_feature; h++) {
for (int w = 0; w < w_feature; w++) {
// effective mask region : [hstart, hend) x [wstart, wend) with
// mask-indexed
const int hstart = max(0, half_h_mask - h);
const int hend = min(h_mask, h_feature + half_h_mask - h);
const int wstart = max(0, half_w_mask - w);
const int wend = min(w_mask, w_feature + half_w_mask - w);
// (hidx, widx ) with mask-indexed
// (hidx + h - half_h_mask, widx + w - half_w_mask) with
// feature-indexed
for (int hidx = hstart; hidx < hend; hidx++) {
for (int widx = wstart; widx < wend; widx++) {
mask_diff.view({-1})[((n * h_mask * w_mask + hidx * w_mask + widx) *
h_feature +
h) *
w_feature +
w] =
buffer_diff.view(
{-1})[(n * h_feature * w_feature + h * w_feature + w) *
h_feature * w_feature +
(hidx + h - half_h_mask) * w_feature +
(widx + w - half_w_mask)];
}
}
}
}
}
}
void psamask_forward_cpu(const int psa_type, const Tensor input, Tensor output,
const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask) {
if (psa_type == 0)
psamask_collect_forward(num_, h_feature, w_feature, h_mask, w_mask,
half_h_mask, half_w_mask, input, output);
else
psamask_distribute_forward(num_, h_feature, w_feature, h_mask, w_mask,
half_h_mask, half_w_mask, input, output);
}
void psamask_backward_cpu(const int psa_type, const Tensor grad_output,
Tensor grad_input, const int num_,
const int h_feature, const int w_feature,
const int h_mask, const int w_mask,
const int half_h_mask, const int half_w_mask) {
if (psa_type == 0)
psamask_collect_backward(num_, h_feature, w_feature, h_mask, w_mask,
half_h_mask, half_w_mask, grad_output, grad_input);
else
psamask_distribute_backward(num_, h_feature, w_feature, h_mask, w_mask,
half_h_mask, half_w_mask, grad_output,
grad_input);
}
void psamask_forward_impl(const int psa_type, const Tensor input, Tensor output,
const int num_, const int h_feature,
const int w_feature, const int h_mask,
const int w_mask, const int half_h_mask,
const int half_w_mask);
void psamask_backward_impl(const int psa_type, const Tensor grad_output,
Tensor grad_input, const int num_,
const int h_feature, const int w_feature,
const int h_mask, const int w_mask,
const int half_h_mask, const int half_w_mask);
REGISTER_DEVICE_IMPL(psamask_forward_impl, CPU, psamask_forward_cpu);
REGISTER_DEVICE_IMPL(psamask_backward_impl, CPU, psamask_backward_cpu);
|