from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel import torch import numpy as np import random import json from fastapi import FastAPI from fastapi.responses import JSONResponse from pydantic import BaseModel from datetime import datetime, timedelta bert_model_name = "alexdseo/RecipeBERT" bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name) bert_model = AutoModel.from_pretrained(bert_model_name) MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH) special_tokens = t5_tokenizer.all_special_tokens tokens_map = { "": "--", "
": "\n" } # --- RecipeBERT-spezifische Funktionen --- def get_embedding(text): """Berechnet das Embedding für einen Text mit Mean Pooling über alle Tokens""" inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = bert_model(**inputs) attention_mask = inputs['attention_mask'] token_embeddings = outputs.last_hidden_state input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return (sum_embeddings / sum_mask).squeeze(0) def format_ingredients_for_bert(ingredients_list): """Formatiert Zutatenliste für BERT""" return f"Ingredients: {', '.join(ingredients_list)}" def normalize_ingredient_name(name): return name.strip().lower() def get_cosine_similarity(vec1, vec2): """Berechnet die Cosinus-Ähnlichkeit zwischen zwei Vektoren""" if torch.is_tensor(vec1): vec1 = vec1.detach().numpy() if torch.is_tensor(vec2): vec2 = vec2.detach().numpy() vec1 = vec1.flatten() vec2 = vec2.flatten() dot_product = np.dot(vec1, vec2) norm_a = np.linalg.norm(vec1) norm_b = np.linalg.norm(vec2) if norm_a == 0 or norm_b == 0: return 0 return dot_product / (norm_a * norm_b) def calculate_age_bonus(date_added_str: str, category: str) -> float: """ Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat. - Standard: 0.5% pro Tag, max. 10%. - Gemüse: 2.0% pro Tag, max. 10%. """ try: # Handle 'Z' for UTC and parse to datetime object date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00')) except ValueError: print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.") return 0.0 today = datetime.now() days_since_added = (today - date_added).days if days_since_added < 0: # Zutat aus der Zukunft? Ungültig. return 0.0 if category and category.lower() == "vegetables": daily_bonus = 0.02 # 2% pro Tag für Gemüse else: daily_bonus = 0.005 # 0.5% pro Tag für andere bonus = days_since_added * daily_bonus return min(bonus, 0.10) # Max 10% (0.10) def find_best_ingredients(required_ingredients_names, available_ingredients_details, max_ingredients=6): """ Findet die besten Zutaten basierend auf RecipeBERT Embeddings required_ingredients_names: Liste von Strings (nur Namen) available_ingredients_details: Liste von IngredientDetail-Objekten """ required_ingredients_names = list(set(required_ingredients_names)) # Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind available_ingredients_filtered_details = [ item for item in available_ingredients_details if item.name not in required_ingredients_names ] # Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat if not required_ingredients_names and available_ingredients_filtered_details: random_item = random.choice(available_ingredients_filtered_details) required_ingredients_names = [random_item.name] # Entferne die zufällig gewählte Zutat aus den verfügbaren Details available_ingredients_filtered_details = [ item for item in available_ingredients_filtered_details if item.name != random_item.name ] print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}") if not required_ingredients_names or len(required_ingredients_names) >= max_ingredients: return required_ingredients_names[:max_ingredients] if not available_ingredients_filtered_details: return required_ingredients_names print(f"\n=== Suche passende Zutaten für Basis: {required_ingredients_names} ===") print(f"Verfügbare Zutaten: {[item.name for item in available_ingredients_filtered_details]}") print("-" * 50) current_combination = required_ingredients_names.copy() remaining_ingredients_details = available_ingredients_filtered_details.copy() # Entferne Duplikate aus remaining_ingredients_details - nur eine Zutat pro Name seen_names = set() unique_remaining_ingredients = [] for item in remaining_ingredients_details: if item.name not in seen_names: unique_remaining_ingredients.append(item) seen_names.add(item.name) remaining_ingredients_details = unique_remaining_ingredients num_to_add = min(max_ingredients - len(required_ingredients_names), len(remaining_ingredients_details)) for round_num in range(num_to_add): best_ingredient_detail = None best_score = -1 # Formatiere aktuelle Kombination für BERT current_text = format_ingredients_for_bert(current_combination) current_embedding = get_embedding(current_text) print(f"\nRunde {round_num + 1} - Aktuelle Kombination: {current_combination}") print("Teste verbleibende Zutaten:") for ingredient_detail in remaining_ingredients_details: # Berechne semantische Ähnlichkeit mit BERT ingredient_text = format_ingredients_for_bert([ingredient_detail.name]) ingredient_embedding = get_embedding(ingredient_text) similarity = get_cosine_similarity(current_embedding, ingredient_embedding) # Berechne Altersbonus age_bonus = calculate_age_bonus(ingredient_detail.dateAdded, ingredient_detail.category) # Kombiniere Ähnlichkeit und Altersbonus final_score = similarity + age_bonus print(f" - '{ingredient_detail.name}': Ähnlichkeit = {similarity:.4f}, Altersbonus = {age_bonus:.4f}, Gesamt = {final_score:.4f}") if final_score > best_score: best_score = final_score best_ingredient_detail = ingredient_detail if best_ingredient_detail: current_combination.append(best_ingredient_detail.name) remaining_ingredients_details.remove(best_ingredient_detail) # Berechne die Komponenten für die Ausgabe best_similarity = get_cosine_similarity( current_embedding, get_embedding(format_ingredients_for_bert([best_ingredient_detail.name])) ) best_age_bonus = calculate_age_bonus(best_ingredient_detail.dateAdded, best_ingredient_detail.category) print(f"\n-> Runde {round_num + 1} abgeschlossen: Beste Zutat ist '{best_ingredient_detail.name}' mit Gesamtscore {best_score:.4f}") print(f" (Ähnlichkeit: {best_similarity:.4f} + Altersbonus: {best_age_bonus:.4f})") print(f" Neue Kombination: {current_combination}") print("-" * 50) else: print("Keine weiteren passenden Zutaten gefunden.") break random.shuffle(current_combination) print(f"\nEndgültige Zutatenkombination: {current_combination}") return current_combination # --- Chef Transformer-spezifische Funktionen --- def skip_special_tokens(text, special_tokens): """Entfernt spezielle Tokens aus dem Text""" for token in special_tokens: text = text.replace(token, "") return text def target_postprocessing(texts, special_tokens): """Post-processed generierten Text""" if not isinstance(texts, list): texts = [texts] new_texts = [] for text in texts: text = skip_special_tokens(text, special_tokens) for k, v in tokens_map.items(): text = text.replace(k, v) new_texts.append(text) return new_texts def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0): """ Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält. """ recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()]) expected_count = len(expected_ingredients) return abs(recipe_count - expected_count) == tolerance def generate_recipe_with_t5(ingredients_list, max_retries=5): """Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung.""" original_ingredients = ingredients_list.copy() for attempt in range(max_retries): try: if attempt > 0: current_ingredients = original_ingredients.copy() random.shuffle(current_ingredients) else: current_ingredients = ingredients_list ingredients_string = ", ".join(current_ingredients) prefix = "items: " generation_kwargs = { "max_length": 512, "min_length": 64, "do_sample": True, "top_k": 60, "top_p": 0.95 } print(f"Attempt {attempt + 1}: {prefix + ingredients_string}") # Debug-Print inputs = t5_tokenizer( prefix + ingredients_string, max_length=256, padding="max_length", truncation=True, return_tensors="jax" ) output_ids = t5_model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, **generation_kwargs ) generated = output_ids.sequences generated_text = target_postprocessing( t5_tokenizer.batch_decode(generated, skip_special_tokens=False), special_tokens )[0] recipe = {} sections = generated_text.split("\n") for section in sections: section = section.strip() if section.startswith("title:"): recipe["title"] = section.replace("title:", "").strip().capitalize() elif section.startswith("ingredients:"): ingredients_text = section.replace("ingredients:", "").strip() recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()] elif section.startswith("directions:"): directions_text = section.replace("directions:", "").strip() recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()] if "title" not in recipe: recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}" if "ingredients" not in recipe: recipe["ingredients"] = current_ingredients if "directions" not in recipe: recipe["directions"] = ["Keine Anweisungen generiert"] if validate_recipe_ingredients(recipe["ingredients"], original_ingredients): print(f"Success on attempt {attempt + 1}: Recipe has correct number of ingredients") # Debug-Print return recipe else: print(f"Attempt {attempt + 1} failed: Expected {len(original_ingredients)} ingredients, got {len(recipe['ingredients'])}") # Debug-Print if attempt == max_retries - 1: print("Max retries reached, returning last generated recipe") # Debug-Print return recipe except Exception as e: print(f"Error in recipe generation attempt {attempt + 1}: {str(e)}") # Debug-Print if attempt == max_retries - 1: return { "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}", "ingredients": original_ingredients, "directions": ["Fehler beim Generieren der Rezeptanweisungen"] } return { "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}", "ingredients": original_ingredients, "directions": ["Fehler beim Generieren der Rezeptanweisungen"] } def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries): """ Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage. available_ingredients_details: Liste von IngredientDetail-Objekten """ if not required_ingredients and not available_ingredients_details: return {"error": "Keine Zutaten angegeben"} try: optimized_ingredients = find_best_ingredients( required_ingredients, available_ingredients_details, max_ingredients ) recipe = generate_recipe_with_t5(optimized_ingredients, max_retries) result = { 'title': recipe['title'], 'ingredients': recipe['ingredients'], 'directions': recipe['directions'], 'used_ingredients': optimized_ingredients } return result except Exception as e: import traceback traceback.print_exc() return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"} # --- FastAPI-Implementierung --- app = FastAPI(title="AI Recipe Generator API") class IngredientDetail(BaseModel): name: str dateAdded: str category: str class RecipeRequest(BaseModel): required_ingredients: list[str] = [] available_ingredients: list[IngredientDetail] = [] max_ingredients: int = 7 max_retries: int = 5 ingredients: list[str] = [] @app.post("/generate_recipe") async def generate_recipe_api(request_data: RecipeRequest): """ Standard-REST-API-Endpunkt für die Flutter-App. Nimmt direkt JSON-Daten an und gibt direkt JSON zurück. """ final_required_ingredients = request_data.required_ingredients if not final_required_ingredients and request_data.ingredients: final_required_ingredients = request_data.ingredients result_dict = process_recipe_request_logic( final_required_ingredients, request_data.available_ingredients, request_data.max_ingredients, request_data.max_retries ) return JSONResponse(content=result_dict) @app.get("/") async def read_root(): return {"message": "AI Recipe Generator API is running (FastAPI only)!"}