Spaces:
Running
Running
Update PFCapp.qmd
Browse files- PFCapp.qmd +449 -0
PFCapp.qmd
CHANGED
@@ -86,6 +86,455 @@ Download the raw and processed data from this study.
|
|
86 |
</p>
|
87 |
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
|
|
|
86 |
</p>
|
87 |
|
88 |
|
89 |
+
```{r}
|
90 |
+
#| context: setup
|
91 |
+
#| warning: false
|
92 |
+
#| message: false
|
93 |
+
|
94 |
+
library(ggplot2)
|
95 |
+
library(Seurat)
|
96 |
+
library(shiny)
|
97 |
+
library(rgl)
|
98 |
+
library(ggdark)
|
99 |
+
library(viridis)
|
100 |
+
library(dplyr)
|
101 |
+
|
102 |
+
source("R/Palettes.R")
|
103 |
+
source('R/includes.R')
|
104 |
+
Adult.Ex <- readRDS('data/Adult.Ex.rds')
|
105 |
+
sp.PFC <- readRDS('data/sp.PFC.rds')
|
106 |
+
sp.PFC$PTi[is.na(sp.PFC$PTi)] <- 0
|
107 |
+
sp.PFC$ITi_D[is.na(sp.PFC$ITi_D)] <- 0
|
108 |
+
sp.PFC$ITi_V[is.na(sp.PFC$ITi_V)] <- 0
|
109 |
+
sp.PFC$ITc[is.na(sp.PFC$ITc)] <- 0
|
110 |
+
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITi-D")] <- "ITi-M1"
|
111 |
+
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITi-V")] <- "ITi-M2"
|
112 |
+
sp.PFC$Proj_module[which(sp.PFC$Proj_module=="ITc")] <- "ITc-M3"
|
113 |
+
colnames([email protected])[match(c("ITi_D","ITi_V","ITc"),colnames([email protected]))] <- c("ITi-M1","ITi-M2","ITc-M3")
|
114 |
+
|
115 |
+
|
116 |
+
clean_cells <- colnames(Adult.Ex)[!(
|
117 |
+
(Adult.Ex$Ex_subtype %in% c("CT","NP") & Adult.Ex$BC_num>0) |
|
118 |
+
(Adult.Ex$sample %in% c("Adult2","Adult3") & Adult.Ex$Ex_subtype=="PT" & Adult.Ex$BC_num>0)
|
119 |
+
)]
|
120 |
+
Adult.Ex.clean <- subset(Adult.Ex, cells = clean_cells)
|
121 |
+
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITi-D")] <- "ITi-M1"
|
122 |
+
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITi-V")] <- "ITi-M2"
|
123 |
+
Adult.Ex.clean$Proj_module[which(Adult.Ex.clean$Proj_module=="ITc")] <- "ITc-M3"
|
124 |
+
colnames([email protected])[match(c("ITi_D_score", "ITi_V_score", "ITc_score", "PTi_score"),colnames([email protected]))] <- c("ITi-M1", "ITi-M2","ITc-M3","PTi")
|
125 |
+
|
126 |
+
options(rgl.useNULL = TRUE)
|
127 |
+
```
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
# scRNAseq {scrolling="true"}
|
134 |
+
|
135 |
+
## {.sidebar}
|
136 |
+
|
137 |
+
```{r}
|
138 |
+
selectInput('cluster', 'Select Cluster', c("SubType_Layer","SubType"))
|
139 |
+
```
|
140 |
+
|
141 |
+
```{r}
|
142 |
+
selectInput('gene', 'Select Gene', rownames(Adult.Ex),
|
143 |
+
selected = "Cux2")
|
144 |
+
```
|
145 |
+
|
146 |
+
```{r}
|
147 |
+
Barcode <- c(
|
148 |
+
"ITi-M1", "ITi-M2", "ITc-M3", "PTi",
|
149 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
150 |
+
'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
|
151 |
+
'ACB-C','PL-C','ECT-C','ENTl-C',
|
152 |
+
'BLA-C','CP-C','AId-C','RSP-C',
|
153 |
+
'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I')
|
154 |
+
selectInput('target', 'Select Target', Barcode, selected = "CP-I")
|
155 |
+
```
|
156 |
+
|
157 |
+
|
158 |
+
## Column
|
159 |
+
|
160 |
+
### Row
|
161 |
+
|
162 |
+
#### Column
|
163 |
+
|
164 |
+
```{r}
|
165 |
+
plotOutput('cluster_plot')
|
166 |
+
```
|
167 |
+
|
168 |
+
#### Column
|
169 |
+
|
170 |
+
```{r}
|
171 |
+
plotOutput('gene_plot')
|
172 |
+
```
|
173 |
+
|
174 |
+
### Row
|
175 |
+
|
176 |
+
#### Column
|
177 |
+
|
178 |
+
```{r}
|
179 |
+
plotOutput('target_plot')
|
180 |
+
```
|
181 |
+
|
182 |
+
#### Column
|
183 |
+
|
184 |
+
```{r}
|
185 |
+
plotOutput('target_bar_plot')
|
186 |
+
```
|
187 |
+
|
188 |
+
|
189 |
+
```{r}
|
190 |
+
#| context: server
|
191 |
+
|
192 |
+
output$cluster_plot <- renderPlot({
|
193 |
+
DimPlot(
|
194 |
+
Adult.Ex,
|
195 |
+
reduction = 'umap',
|
196 |
+
group.by = input$cluster,
|
197 |
+
cols = col_cluster[[input$cluster]],
|
198 |
+
label = T
|
199 |
+
) +
|
200 |
+
coord_fixed()
|
201 |
+
})
|
202 |
+
|
203 |
+
output$gene_plot <- renderPlot({
|
204 |
+
FeaturePlot(
|
205 |
+
Adult.Ex,
|
206 |
+
features = input$gene) +
|
207 |
+
coord_fixed()
|
208 |
+
})
|
209 |
+
|
210 |
+
output$target_plot <- renderPlot({
|
211 |
+
Barcode <- c(
|
212 |
+
"ITi-M1", "ITi-M2","ITc-M3","PTi",
|
213 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
214 |
+
'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
|
215 |
+
'ACB-C','PL-C','ECT-C','ENTl-C',
|
216 |
+
'BLA-C','CP-C','AId-C','RSP-C',
|
217 |
+
'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I'
|
218 |
+
)
|
219 |
+
seu <- Adult.Ex.clean
|
220 |
+
[email protected][,Barcode][is.na([email protected][,Barcode])] <- 0
|
221 |
+
FeaturePlot(
|
222 |
+
seu, features = input$target, order = T) +
|
223 |
+
coord_fixed()
|
224 |
+
})
|
225 |
+
|
226 |
+
output$target_bar_plot <- renderPlot({
|
227 |
+
seu <- Adult.Ex.clean
|
228 |
+
if (input$target %in% c("ITi-M1", "ITi-M2","ITc-M3","PTi")){
|
229 |
+
df <- as.data.frame(table([email protected][,input$cluster][which(seu$Proj_module==input$target)]))
|
230 |
+
}else{
|
231 |
+
df <- as.data.frame(table([email protected][,input$cluster][which([email protected][,input$target]>0)]))
|
232 |
+
}
|
233 |
+
colnames(df) <- c("Celltypes","Cellnum")
|
234 |
+
|
235 |
+
ggplot(df, aes(x=Celltypes, y=Cellnum, fill=Celltypes)) +
|
236 |
+
geom_col() +
|
237 |
+
scale_fill_manual(values = col_cluster[[input$cluster]]) +
|
238 |
+
theme_classic() +
|
239 |
+
theme(axis.text.x = element_text(angle = 25, hjust = 1),
|
240 |
+
plot.title = element_text(hjust = 0.5)) +
|
241 |
+
labs(title = paste("PFC → ",input$target," cell numbers in different cell type",
|
242 |
+
sep=""))
|
243 |
+
})
|
244 |
+
```
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
# Spatial {scrolling="true"}
|
251 |
+
|
252 |
+
## {.sidebar}
|
253 |
+
|
254 |
+
```{r}
|
255 |
+
selectInput('sp_slice', 'Select Slice', unique(sp.PFC$slice),
|
256 |
+
selected = "IT_slice_10")
|
257 |
+
```
|
258 |
+
|
259 |
+
```{r}
|
260 |
+
selectInput('sp_cluster', 'Select Cluster', c("SubType_Layer","SubType"))
|
261 |
+
```
|
262 |
+
|
263 |
+
```{r}
|
264 |
+
selectInput('sp_gene', 'Select Gene', rownames(sp.PFC),
|
265 |
+
selected = "Cux2")
|
266 |
+
```
|
267 |
+
|
268 |
+
```{r}
|
269 |
+
sp_Barcode <- c(
|
270 |
+
"ITi-M1", "ITi-M2","ITc-M3","PTi",
|
271 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
272 |
+
'BLA-I','ACB-I','AId-I','ECT-I',
|
273 |
+
'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
|
274 |
+
'LHA-I')
|
275 |
+
selectInput('sp_target', 'Select Target', sp_Barcode)
|
276 |
+
```
|
277 |
+
|
278 |
+
|
279 |
+
## Column
|
280 |
+
|
281 |
+
### Row
|
282 |
+
|
283 |
+
#### Column
|
284 |
+
|
285 |
+
```{r}
|
286 |
+
#| fig-width: 10
|
287 |
+
|
288 |
+
plotOutput('sp_cluster_plot')
|
289 |
+
```
|
290 |
+
|
291 |
+
#### Column
|
292 |
+
|
293 |
+
```{r}
|
294 |
+
#| fig-width: 10
|
295 |
+
|
296 |
+
plotOutput('sp_gene_plot')
|
297 |
+
```
|
298 |
+
|
299 |
+
### Row
|
300 |
+
|
301 |
+
#### Column
|
302 |
+
|
303 |
+
```{r}
|
304 |
+
#| fig-width: 10
|
305 |
+
|
306 |
+
plotOutput('sp_target_plot')
|
307 |
+
```
|
308 |
+
|
309 |
+
#### Column
|
310 |
+
|
311 |
+
```{r}
|
312 |
+
#| fig-width: 10
|
313 |
+
|
314 |
+
plotOutput('sp_target_line_plot')
|
315 |
+
```
|
316 |
+
|
317 |
+
```{r}
|
318 |
+
#| context: server
|
319 |
+
|
320 |
+
output$sp_cluster_plot <- renderPlot({
|
321 |
+
df <- data.frame(
|
322 |
+
x = sp.PFC$ML_new[sp.PFC$slice==input$sp_slice],
|
323 |
+
y = sp.PFC$DV_new[sp.PFC$slice==input$sp_slice],
|
324 |
+
type = [email protected][sp.PFC$slice==input$sp_slice, input$sp_cluster]
|
325 |
+
)
|
326 |
+
ggplot(df, aes(x=x, y=y, color=type)) +
|
327 |
+
geom_point(size=1) +
|
328 |
+
scale_color_manual(values = col_cluster[[input$sp_cluster]]) +
|
329 |
+
labs(title = paste(input$slice,'Cell types in spatial')) +
|
330 |
+
guides(color=guide_legend(nrow = 2, byrow = TRUE, reverse = T,
|
331 |
+
override.aes = list(size=2))) +
|
332 |
+
coord_fixed() +
|
333 |
+
ggdark::dark_theme_void() +
|
334 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
335 |
+
legend.position = 'bottom', legend.title=element_blank(),
|
336 |
+
legend.text = element_text(size=10))
|
337 |
+
})
|
338 |
+
|
339 |
+
output$sp_gene_plot <- renderPlot({
|
340 |
+
df <- data.frame(
|
341 |
+
X = sp.PFC$ML_new,
|
342 |
+
Y = sp.PFC$DV_new,
|
343 |
+
Zscore = scale(log1p(sp.PFC@assays$RNA@counts[input$sp_gene,]))
|
344 |
+
)
|
345 |
+
df <- df[which(sp.PFC$slice==input$sp_slice),]
|
346 |
+
df$Zscore[df$Zscore<0] <- 0
|
347 |
+
df$Zscore[df$Zscore>3] <- 3
|
348 |
+
df <- df[order(df$Zscore),]
|
349 |
+
ggplot(df,aes(x=X,y=Y)) +
|
350 |
+
geom_point(aes(colour=Zscore), size=1) +
|
351 |
+
scale_color_gradientn(colours = viridis(n = 256, option = "D", direction = 1),
|
352 |
+
limits = c(0,3)) +
|
353 |
+
ggdark::dark_theme_void() +
|
354 |
+
labs(title = input$sp_gene) +
|
355 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
356 |
+
legend.position = 'bottom') +
|
357 |
+
coord_fixed()
|
358 |
+
})
|
359 |
+
|
360 |
+
output$sp_target_plot <- renderPlot({
|
361 |
+
df <- data.frame(
|
362 |
+
X = sp.PFC$ML_new,
|
363 |
+
Y = sp.PFC$DV_new,
|
364 |
+
Zscore = scale(log1p([email protected][,input$sp_target]))
|
365 |
+
)
|
366 |
+
df <- df[which(sp.PFC$slice==input$sp_slice),]
|
367 |
+
df$Zscore[df$Zscore<0] <- 0
|
368 |
+
df$Zscore[df$Zscore>3] <- 3
|
369 |
+
df <- df[order(df$Zscore),]
|
370 |
+
ggplot(df, aes(x=X,y=Y)) +
|
371 |
+
geom_point(aes(colour=Zscore), size=1) +
|
372 |
+
scale_color_gradientn(colours = viridis(n = 256, option = "E", direction = 1)) +
|
373 |
+
ggdark::dark_theme_void() +
|
374 |
+
labs(title = input$sp_target) +
|
375 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
376 |
+
legend.position = 'bottom') +
|
377 |
+
coord_fixed()
|
378 |
+
})
|
379 |
+
|
380 |
+
output$sp_target_line_plot <- renderPlot({
|
381 |
+
# AP
|
382 |
+
seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
|
383 |
+
slice <- unique(seu$slice)
|
384 |
+
df <- data.frame('slice'=slice)
|
385 |
+
for (i in 1:length(slice)){
|
386 |
+
if (input$sp_target %in% c("ITi-M1","ITi-M2","ITc-M3","PTi")){
|
387 |
+
df$cellnum[i] <- length(which(seu$slice==slice[i] & seu$Proj_module==input$sp_target))/length(which(seu$slice==slice[i] & seu$BC_num>0))
|
388 |
+
}else{
|
389 |
+
df$cellnum[i] <- length(which(seu$slice==slice[i] & [email protected][,input$sp_target]>0))/length(which(seu$slice==slice[i] & seu$BC_num>0))
|
390 |
+
}
|
391 |
+
}
|
392 |
+
df$x <- c(1:36)
|
393 |
+
p1 <- ggplot(df, aes(x=x, y=cellnum)) +
|
394 |
+
geom_point(alpha=0.5, size=3, color=col_subtype_target[input$sp_target]) +
|
395 |
+
geom_smooth(se = F, linewidth=1.5, color=col_subtype_target[input$sp_target]) +
|
396 |
+
theme_bw() +
|
397 |
+
scale_x_continuous(breaks = seq(0,35,5)) +
|
398 |
+
theme(text = element_text(size=15),
|
399 |
+
plot.title = element_text(size = 20, hjust = 0.5)) +
|
400 |
+
labs(x='A → P',y='Cell proportion')
|
401 |
+
|
402 |
+
# DV
|
403 |
+
sp_Barcode <- c("ITi-M1","ITi-M2","ITc-M3", "PTi",
|
404 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
405 |
+
'BLA-I','ACB-I','AId-I','ECT-I',
|
406 |
+
'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
|
407 |
+
'LHA-I')
|
408 |
+
seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
|
409 |
+
bc_slice <- [email protected][,c(sp_Barcode, 'Y','BC_num')]
|
410 |
+
bc_slice <-
|
411 |
+
bc_slice |>
|
412 |
+
mutate(bin = cut(Y, breaks = 36))
|
413 |
+
bin <- sort(unique(bc_slice$bin))
|
414 |
+
bc_slice$bin_index <- match(bc_slice$bin, bin)
|
415 |
+
df <- data.frame('bin_index'=c(1:36))
|
416 |
+
for (i in 1:36){
|
417 |
+
df$cellnum[i] <- length(which(bc_slice$bin_index==i &
|
418 |
+
bc_slice[,input$sp_target]>0))/
|
419 |
+
length(which(bc_slice$bin_index==i & bc_slice$BC_num>0))
|
420 |
+
}
|
421 |
+
df$x <- c(1:36)
|
422 |
+
p2 <- ggplot(df, aes(x=x, y=cellnum)) +
|
423 |
+
geom_point(alpha=0.5, size=3, color=col_subtype_target[input$sp_target]) +
|
424 |
+
geom_smooth(se = F, linewidth=1.5, color=col_subtype_target[input$sp_target]) +
|
425 |
+
theme_bw() +
|
426 |
+
scale_x_continuous(breaks = seq(0,35,5)) +
|
427 |
+
theme(text = element_text(size=15),
|
428 |
+
plot.title = element_text(size = 20, hjust = 0.5)) +
|
429 |
+
labs(x='V → D',y='Cell proportion')
|
430 |
+
p1/p2
|
431 |
+
})
|
432 |
+
```
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
# 3D
|
440 |
+
|
441 |
+
## {.sidebar}
|
442 |
+
|
443 |
+
```{r}
|
444 |
+
sp_Barcode <- c("ITi-M1","ITi-M2","ITc-M3", "PTi",
|
445 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
446 |
+
'BLA-I','ACB-I','AId-I','ECT-I',
|
447 |
+
'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
|
448 |
+
'LHA-I')
|
449 |
+
waiter::use_waiter()
|
450 |
+
selectInput('subtype_3d', 'Select SubType', sort(unique(sp.PFC$SubType)))
|
451 |
+
selectInput('target_3d', 'Select Target', sp_Barcode, selected = "PTi")
|
452 |
+
```
|
453 |
+
|
454 |
+
|
455 |
+
## Column
|
456 |
+
|
457 |
+
```{r}
|
458 |
+
rglwidgetOutput('spatial_subtype', width = "100%")
|
459 |
+
```
|
460 |
+
|
461 |
+
|
462 |
+
```{r}
|
463 |
+
#| context: server
|
464 |
+
|
465 |
+
observeEvent(input$subtype_3d,{
|
466 |
+
waiter::Waiter$new(id = "spatial_subtype", color="black")$show()
|
467 |
+
output$spatial_subtype <- renderRglwidget({
|
468 |
+
df_plot <- [email protected][which(sp.PFC$SubType == input$subtype_3d),]
|
469 |
+
|
470 |
+
open3d()
|
471 |
+
bg3d(color = "black")
|
472 |
+
par3d(userMatrix = rotationMatrix(-pi/6, -1, 1, 0), zoom = 0.6)
|
473 |
+
acr.list <- c("MOs","PL","ORBm","ACAd","ILA","DP","ACAv")
|
474 |
+
|
475 |
+
for(acr in acr.list){
|
476 |
+
mesh <- mesh3d.allen.annot.from.id(get.id.from.acronym(acr))
|
477 |
+
col <- "lightgray"
|
478 |
+
shade3d(mesh, col = col, material = list(lit=FALSE), alpha = 0.1)
|
479 |
+
}
|
480 |
+
|
481 |
+
spheres3d(x = df_plot$ML_new,
|
482 |
+
y = df_plot$DV_new,
|
483 |
+
z = df_plot$AP_new,
|
484 |
+
col = col_subtype_target[input$subtype_3d], radius=0.01, alpha=1)
|
485 |
+
rglwidget()
|
486 |
+
})
|
487 |
+
})
|
488 |
+
|
489 |
+
|
490 |
+
observeEvent(input$target_3d,{
|
491 |
+
waiter::Waiter$new(id = "spatial_subtype", color="black")$show()
|
492 |
+
output$spatial_subtype <- renderRglwidget({
|
493 |
+
if (input$target_3d %in% c("ITi-M1","ITi-M2","ITc-M3", "PTi")){
|
494 |
+
df_plot <- [email protected][which(sp.PFC$Proj_module==input$target_3d),]
|
495 |
+
}else{
|
496 |
+
df_plot <- [email protected][which([email protected][,input$target_3d] > 0),]
|
497 |
+
}
|
498 |
+
|
499 |
+
open3d()
|
500 |
+
bg3d(color = "black")
|
501 |
+
par3d(userMatrix = rotationMatrix(-pi/6, -1, 1, 0), zoom = 0.6)
|
502 |
+
acr.list <- c("MOs","PL","ORBm","ACAd","ILA","DP","ACAv")
|
503 |
+
|
504 |
+
for(acr in acr.list){
|
505 |
+
mesh <- mesh3d.allen.annot.from.id(get.id.from.acronym(acr))
|
506 |
+
col <- "lightgray"
|
507 |
+
shade3d(mesh, col = col, material = list(lit=FALSE), alpha = 0.1)
|
508 |
+
}
|
509 |
+
|
510 |
+
spheres3d(x = df_plot$ML_new,
|
511 |
+
y = df_plot$DV_new,
|
512 |
+
z = df_plot$AP_new,
|
513 |
+
col = col_subtype_target[input$target_3d], radius=0.01, alpha=1)
|
514 |
+
rglwidget()
|
515 |
+
})
|
516 |
+
})
|
517 |
+
```
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
# Download
|
523 |
+
|
524 |
+
<p style="font-size: 20px; text-align: justify;">
|
525 |
+
The raw single cell RNA-seq data are available from GEO (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273066">GSE273066</a>).
|
526 |
+
</p>
|
527 |
+
|
528 |
+
<p style="font-size: 20px; text-align: justify;">
|
529 |
+
The raw image data for this study are available via Hugging Face at <a href="https://huggingface.co/TigerZheng/SPIDER-STdata">TigerZheng/SPIDER-STdata</a>. You can download and unzip the .zip file and then use <a href="https://github.com/hms-dbmi/viv">viv</a> to visualize our raw data.
|
530 |
+
An example: <a href="https://avivator.gehlenborglab.org/?image_url=https://huggingface.co/TigerZheng/SPIDER-STdata/resolve/main/IT_slice_36_reordered.ome.tiff">IT_slice_36</a>.</p>
|
531 |
+
|
532 |
+
<p style="font-size: 20px; text-align: justify;">
|
533 |
+
The processed data can be downloaded here:</p>
|
534 |
+
|
535 |
+
- All cells data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/all.Adult.rds?download=true">all.Adult.rds</a>
|
536 |
+
- Excitatory data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/Adult.Ex.rds?download=true">Adult.Ex.rds</a>
|
537 |
+
- Spatial data: <a href="https://huggingface.co/spaces/TigerZheng/SPIDER-web/resolve/main/data/sp.PFC.rds?download=true">sp.PFC.rds</a>
|
538 |
|
539 |
|
540 |
|