Spaces:
Sleeping
Sleeping
Update PFCapp.qmd
Browse files- PFCapp.qmd +312 -17
PFCapp.qmd
CHANGED
@@ -38,19 +38,53 @@ Medial prefrontal cortex (mPFC) is the high-level center of brain cognitive func
|
|
38 |
Interactively exploring the data
|
39 |
</p>
|
40 |
|
41 |
-
<
|
42 |
scRNAseq
|
43 |
-
</
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
-
|
46 |
-
-
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
Spatial data
|
50 |
-
</
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
```{r}
|
@@ -63,6 +97,9 @@ library(Seurat)
|
|
63 |
#library(scCustomize)
|
64 |
library(shiny)
|
65 |
library(rgl)
|
|
|
|
|
|
|
66 |
#library(wholebrain)
|
67 |
#attach(loadNamespace('wholebrain'), warn.conflicts = FALSE)
|
68 |
source("R/Palettes.R")
|
@@ -74,24 +111,62 @@ options(rgl.useNULL = TRUE)
|
|
74 |
|
75 |
|
76 |
|
77 |
-
# scRNAseq
|
78 |
|
79 |
-
## Row
|
80 |
|
81 |
-
|
|
|
|
|
82 |
|
83 |
```{r}
|
84 |
selectInput('cluster', 'Select Cluster', c("SubType_Layer","SubType"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
plotOutput('cluster_plot')
|
86 |
```
|
87 |
|
88 |
-
|
89 |
|
90 |
```{r}
|
91 |
-
selectInput('gene', 'Select Gene', rownames(Adult.Ex))
|
92 |
plotOutput('gene_plot')
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
```{r}
|
97 |
#| context: server
|
@@ -113,29 +188,238 @@ output$gene_plot <- renderPlot({
|
|
113 |
features = input$gene) +
|
114 |
coord_fixed()
|
115 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
```
|
117 |
|
118 |
|
119 |
|
120 |
|
121 |
|
|
|
122 |
|
123 |
-
|
124 |
|
125 |
-
```{
|
126 |
-
|
127 |
```
|
128 |
|
|
|
|
|
|
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
# 3D
|
132 |
|
133 |
-
## Row
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
```{r}
|
138 |
selectInput('subtype', 'Select SubType', sort(unique(sp.PFC$SubType)))
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
rglwidgetOutput('spatial_subtype', width = "100%")
|
140 |
```
|
141 |
|
@@ -173,3 +457,14 @@ output$spatial_subtype <- renderRglwidget({
|
|
173 |
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
Interactively exploring the data
|
39 |
</p>
|
40 |
|
41 |
+
<p style="font-size: 20px; font-weight: bold; text-align: left;">
|
42 |
scRNAseq
|
43 |
+
</p>
|
44 |
+
|
45 |
+
<p style="font-size: 20px; text-align: justify;">
|
46 |
+
Our scRNAseq dataset sequenced the PFC of 3 mice. It contains the transcriptome of mouse PFC and the projectome information of 24 PFC targets. Users can browse the following content through the scRNA-seq tab:
|
47 |
+
</p>
|
48 |
|
49 |
+
- Cells in the UMAP can be clustered differently by selecting different classification in Metadata
|
50 |
+
- Select to view different genes expression in the UMAP
|
51 |
+
- Select to view different PFC targets expression in the UMAP
|
52 |
+
- View PFC targets cell numbers in different cell type
|
53 |
|
54 |
+
|
55 |
+
|
56 |
+
<p style="font-size: 20px; font-weight: bold; text-align: left;">
|
57 |
Spatial data
|
58 |
+
</p>
|
59 |
+
|
60 |
+
<p style="font-size: 20px; text-align: justify;">
|
61 |
+
Our spatial dataset sequenced 36 slices of mouse PFC. It contains 32 genes and 15 targets information of mouse PFC. Users can browse the following content through the spatial tab:
|
62 |
+
</p>
|
63 |
+
|
64 |
+
- Select to view different cell types in spatial
|
65 |
+
- Select to view different gene expression in spatial
|
66 |
+
- Select to view different PFC targets expression in spatial
|
67 |
+
- Select to view different PFC targets distribution in anterior-posterior and ventralis-dorsalis axes
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
<p style="font-size: 20px; font-weight: bold; text-align: left;">
|
72 |
+
3D
|
73 |
+
</p>
|
74 |
+
|
75 |
+
<p style="font-size: 20px; text-align: justify;">
|
76 |
+
3D interactive visualization of mouse PFC.
|
77 |
+
</p>
|
78 |
|
79 |
|
80 |
|
81 |
+
<p style="font-size: 20px; font-weight: bold; text-align: left;">
|
82 |
+
raw image
|
83 |
+
</p>
|
84 |
+
|
85 |
+
<p style="font-size: 20px; text-align: justify;">
|
86 |
+
visualization of raw images.
|
87 |
+
</p>
|
88 |
|
89 |
|
90 |
```{r}
|
|
|
97 |
#library(scCustomize)
|
98 |
library(shiny)
|
99 |
library(rgl)
|
100 |
+
library(ggdark)
|
101 |
+
library(viridis)
|
102 |
+
library(tidyverse)
|
103 |
#library(wholebrain)
|
104 |
#attach(loadNamespace('wholebrain'), warn.conflicts = FALSE)
|
105 |
source("R/Palettes.R")
|
|
|
111 |
|
112 |
|
113 |
|
|
|
114 |
|
|
|
115 |
|
116 |
+
# scRNAseq {scrolling="true"}
|
117 |
+
|
118 |
+
## {.sidebar}
|
119 |
|
120 |
```{r}
|
121 |
selectInput('cluster', 'Select Cluster', c("SubType_Layer","SubType"))
|
122 |
+
```
|
123 |
+
|
124 |
+
```{r}
|
125 |
+
selectInput('gene', 'Select Gene', rownames(Adult.Ex))
|
126 |
+
```
|
127 |
+
|
128 |
+
```{r}
|
129 |
+
Barcode <- c(
|
130 |
+
"ITi_D_score", "ITi_V_score", "ITc_score", "PTi_score",
|
131 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
132 |
+
'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
|
133 |
+
'ACB-C','PL-C','ECT-C','ENTl-C',
|
134 |
+
'BLA-C','CP-C','AId-C','RSP-C',
|
135 |
+
'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I')
|
136 |
+
selectInput('target', 'Select Target', Barcode)
|
137 |
+
```
|
138 |
+
|
139 |
+
|
140 |
+
## Column
|
141 |
+
|
142 |
+
### Row
|
143 |
+
|
144 |
+
#### Column
|
145 |
+
|
146 |
+
```{r}
|
147 |
plotOutput('cluster_plot')
|
148 |
```
|
149 |
|
150 |
+
#### Column
|
151 |
|
152 |
```{r}
|
|
|
153 |
plotOutput('gene_plot')
|
154 |
```
|
155 |
|
156 |
+
### Row
|
157 |
+
|
158 |
+
#### Column
|
159 |
+
|
160 |
+
```{r}
|
161 |
+
plotOutput('target_plot')
|
162 |
+
```
|
163 |
+
|
164 |
+
#### Column
|
165 |
+
|
166 |
+
```{r}
|
167 |
+
plotOutput('target_bar_plot')
|
168 |
+
```
|
169 |
+
|
170 |
|
171 |
```{r}
|
172 |
#| context: server
|
|
|
188 |
features = input$gene) +
|
189 |
coord_fixed()
|
190 |
})
|
191 |
+
|
192 |
+
output$target_plot <- renderPlot({
|
193 |
+
Barcode <- c(
|
194 |
+
"ITi_D_score", "ITi_V_score", "ITc_score", "PTi_score",
|
195 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
196 |
+
'BLA-I','ACB-I','ENTl-I','AId-I','ECT-I',
|
197 |
+
'ACB-C','PL-C','ECT-C','ENTl-C',
|
198 |
+
'BLA-C','CP-C','AId-C','RSP-C',
|
199 |
+
'MD-I','RE-I','DR-I','VTA-I','LHA-I','SC-I')
|
200 |
+
|
201 |
+
seu <- Adult.Ex
|
202 |
+
[email protected][,Barcode][is.na([email protected][,Barcode])] <- 0
|
203 |
+
FeaturePlot(
|
204 |
+
seu, features = input$target, order = T) +
|
205 |
+
coord_fixed()
|
206 |
+
})
|
207 |
+
|
208 |
+
output$target_bar_plot <- renderPlot({
|
209 |
+
df <- as.data.frame(table([email protected][,input$cluster][which(
|
210 |
+
[email protected][,input$target]>0)]))
|
211 |
+
colnames(df) <- c("Celltypes","Cellnum")
|
212 |
+
|
213 |
+
ggplot(df, aes(x=Celltypes, y=Cellnum, fill=Celltypes)) +
|
214 |
+
geom_col() +
|
215 |
+
scale_fill_manual(values = col_cluster[[input$cluster]]) +
|
216 |
+
theme_classic() +
|
217 |
+
theme(axis.text.x = element_text(angle = 25, hjust = 1),
|
218 |
+
plot.title = element_text(hjust = 0.5)) +
|
219 |
+
labs(title = paste("PFC → ",input$target," cell numbers in different cell type",
|
220 |
+
sep=""))
|
221 |
+
})
|
222 |
```
|
223 |
|
224 |
|
225 |
|
226 |
|
227 |
|
228 |
+
# Spatial {scrolling="true"}
|
229 |
|
230 |
+
## {.sidebar}
|
231 |
|
232 |
+
```{r}
|
233 |
+
selectInput('sp_slice', 'Select Slice', unique(sp.PFC$slice))
|
234 |
```
|
235 |
|
236 |
+
```{r}
|
237 |
+
selectInput('sp_cluster', 'Select Cluster', c("SubType_Layer","SubType"))
|
238 |
+
```
|
239 |
|
240 |
+
```{r}
|
241 |
+
selectInput('sp_gene', 'Select Gene', rownames(sp.PFC))
|
242 |
+
```
|
243 |
+
|
244 |
+
```{r}
|
245 |
+
sp_Barcode <- c(
|
246 |
+
"ITi_D", "ITi_V", "ITc", "PTi",
|
247 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
248 |
+
'BLA-I','ACB-I','AId-I','ECT-I',
|
249 |
+
'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
|
250 |
+
'LHA-I')
|
251 |
+
selectInput('sp_target', 'Select Target', sp_Barcode)
|
252 |
+
```
|
253 |
+
|
254 |
+
|
255 |
+
## Column
|
256 |
+
|
257 |
+
### Row
|
258 |
+
|
259 |
+
#### Column
|
260 |
+
|
261 |
+
```{r}
|
262 |
+
#| fig-width: 10
|
263 |
+
|
264 |
+
plotOutput('sp_cluster_plot')
|
265 |
+
```
|
266 |
+
|
267 |
+
#### Column
|
268 |
+
|
269 |
+
```{r}
|
270 |
+
#| fig-width: 10
|
271 |
+
|
272 |
+
plotOutput('sp_gene_plot')
|
273 |
+
```
|
274 |
+
|
275 |
+
### Row
|
276 |
+
|
277 |
+
#### Column
|
278 |
+
|
279 |
+
```{r}
|
280 |
+
#| fig-width: 10
|
281 |
+
|
282 |
+
plotOutput('sp_target_plot')
|
283 |
+
```
|
284 |
+
|
285 |
+
#### Column
|
286 |
+
|
287 |
+
```{r}
|
288 |
+
#| fig-width: 10
|
289 |
+
|
290 |
+
plotOutput('sp_target_line_plot')
|
291 |
+
```
|
292 |
+
|
293 |
+
```{r}
|
294 |
+
#| context: server
|
295 |
+
|
296 |
+
output$sp_cluster_plot <- renderPlot({
|
297 |
+
df <- data.frame(
|
298 |
+
x = sp.PFC$ML_new[sp.PFC$slice==input$sp_slice],
|
299 |
+
y = sp.PFC$DV_new[sp.PFC$slice==input$sp_slice],
|
300 |
+
type = [email protected][sp.PFC$slice==input$sp_slice, input$sp_cluster]
|
301 |
+
)
|
302 |
+
ggplot(df, aes(x=x, y=y, color=type)) +
|
303 |
+
geom_point(size=1) +
|
304 |
+
scale_color_manual(values = col_cluster[[input$sp_cluster]]) +
|
305 |
+
labs(title = paste(input$slice,'cell types in spatial')) +
|
306 |
+
guides(color=guide_legend(nrow = 2, byrow = TRUE, reverse = T,
|
307 |
+
override.aes = list(size=2))) +
|
308 |
+
coord_fixed() +
|
309 |
+
ggdark::dark_theme_void() +
|
310 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
311 |
+
legend.position = 'bottom', legend.title=element_blank(),
|
312 |
+
legend.text = element_text(size=10))
|
313 |
+
})
|
314 |
+
|
315 |
+
output$sp_gene_plot <- renderPlot({
|
316 |
+
df <- data.frame(
|
317 |
+
X = sp.PFC$ML_new,
|
318 |
+
Y = sp.PFC$DV_new,
|
319 |
+
Zscore = scale(log1p(sp.PFC@assays$RNA@counts[input$sp_gene,]))
|
320 |
+
)
|
321 |
+
df <- df[which(sp.PFC$slice==input$sp_slice),]
|
322 |
+
df <- df[order(df$Zscore),]
|
323 |
+
ggplot(df,aes(x=X,y=Y)) +
|
324 |
+
geom_point(aes(colour=Zscore), size=1) +
|
325 |
+
scale_color_gradientn(colours = viridis(n = 256, option = "D", direction = 1)) +
|
326 |
+
ggdark::dark_theme_void() +
|
327 |
+
labs(title = input$sp_gene) +
|
328 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
329 |
+
legend.position = 'bottom') +
|
330 |
+
coord_fixed()
|
331 |
+
})
|
332 |
+
|
333 |
+
output$sp_target_plot <- renderPlot({
|
334 |
+
seu <- sp.PFC
|
335 |
+
[email protected][,c("PTi","ITi_D","ITi_V","ITc")][is.na([email protected][,c("PTi","ITi_D","ITi_V","ITc")])] <- 0
|
336 |
+
df <- data.frame(
|
337 |
+
X = sp.PFC$ML_new,
|
338 |
+
Y = sp.PFC$DV_new,
|
339 |
+
Zscore = scale(log1p([email protected][,input$sp_target]))
|
340 |
+
)
|
341 |
+
df <- df[which(sp.PFC$slice==input$sp_slice),]
|
342 |
+
df <- df[order(df$Zscore),]
|
343 |
+
ggplot(df, aes(x=X,y=Y)) +
|
344 |
+
geom_point(aes(colour=Zscore), size=1) +
|
345 |
+
scale_color_gradientn(colours = viridis(n = 256, option = "E", direction = 1)) +
|
346 |
+
ggdark::dark_theme_void() +
|
347 |
+
labs(title = input$sp_target) +
|
348 |
+
theme(plot.title = element_text(size = 20, hjust = 0.5),
|
349 |
+
legend.position = 'bottom') +
|
350 |
+
coord_fixed()
|
351 |
+
})
|
352 |
+
|
353 |
+
output$sp_target_line_plot <- renderPlot({
|
354 |
+
# AP
|
355 |
+
seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
|
356 |
+
slice <- unique(seu$slice)
|
357 |
+
df <- data.frame('slice'=slice)
|
358 |
+
for (i in 1:length(slice)){
|
359 |
+
df$cellnum[i] <- length(which(seu$slice==slice[i] &
|
360 |
+
[email protected][,input$sp_target]>0))/
|
361 |
+
length(which(seu$slice==slice[i] & seu$BC_num>0))
|
362 |
+
}
|
363 |
+
df$x <- c(1:36)
|
364 |
+
p1 <- ggplot(df, aes(x=x, y=cellnum)) +
|
365 |
+
geom_point(alpha=0.5, size=3, color=col_Barcode[input$sp_target]) +
|
366 |
+
geom_smooth(se = F, linewidth=1.5, color=col_Barcode[input$sp_target]) +
|
367 |
+
theme_bw() +
|
368 |
+
scale_x_continuous(breaks = seq(0,35,5)) +
|
369 |
+
theme(text = element_text(size=15),
|
370 |
+
plot.title = element_text(size = 20, hjust = 0.5)) +
|
371 |
+
labs(x='A → P',y='Cell proportion')
|
372 |
+
|
373 |
+
# DV
|
374 |
+
sp_Barcode <- c("ITi_D", "ITi_V", "ITc", "PTi",
|
375 |
+
'VIS-I','SSp-I','CP-I','AUD-I','RSP-I',
|
376 |
+
'BLA-I','ACB-I','AId-I','ECT-I',
|
377 |
+
'ACB-C','ECT-C','CP-C','AId-C','RSP-C',
|
378 |
+
'LHA-I')
|
379 |
+
seu <- subset(sp.PFC, cells=colnames(sp.PFC)[which(sp.PFC$ABA_hemisphere=="Left")])
|
380 |
+
bc_slice <- [email protected][,c(sp_Barcode, 'Y','BC_num')]
|
381 |
+
bc_slice <-
|
382 |
+
bc_slice |>
|
383 |
+
mutate(bin = cut(Y, breaks = 36))
|
384 |
+
bin <- sort(unique(bc_slice$bin))
|
385 |
+
bc_slice$bin_index <- match(bc_slice$bin, bin)
|
386 |
+
df <- data.frame('bin_index'=c(1:36))
|
387 |
+
for (i in 1:36){
|
388 |
+
df$cellnum[i] <- length(which(bc_slice$bin_index==i &
|
389 |
+
bc_slice[,input$sp_target]>0))/
|
390 |
+
length(which(bc_slice$bin_index==i & bc_slice$BC_num>0))
|
391 |
+
}
|
392 |
+
df$x <- c(1:36)
|
393 |
+
p2 <- ggplot(df, aes(x=x, y=cellnum)) +
|
394 |
+
geom_point(alpha=0.5, size=3, color=col_Barcode[input$sp_target]) +
|
395 |
+
geom_smooth(se = F, linewidth=1.5, color=col_Barcode[input$sp_target]) +
|
396 |
+
theme_bw() +
|
397 |
+
scale_x_continuous(breaks = seq(0,35,5)) +
|
398 |
+
theme(text = element_text(size=15),
|
399 |
+
plot.title = element_text(size = 20, hjust = 0.5)) +
|
400 |
+
labs(x='D → V',y='Cell proportion') +
|
401 |
+
xlim(36, 0)
|
402 |
+
p1/p2
|
403 |
+
})
|
404 |
+
```
|
405 |
|
|
|
406 |
|
|
|
407 |
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
# 3D
|
412 |
+
|
413 |
+
## {.sidebar}
|
414 |
|
415 |
```{r}
|
416 |
selectInput('subtype', 'Select SubType', sort(unique(sp.PFC$SubType)))
|
417 |
+
```
|
418 |
+
|
419 |
+
|
420 |
+
## Column
|
421 |
+
|
422 |
+
```{r}
|
423 |
rglwidgetOutput('spatial_subtype', width = "100%")
|
424 |
```
|
425 |
|
|
|
457 |
|
458 |
|
459 |
|
460 |
+
|
461 |
+
# raw image
|
462 |
+
|
463 |
+
```{=html}
|
464 |
+
<iframe src="https://avivator.gehlenborglab.org/?image_url=https://huggingface.co/YAYUhuang/Imagesave/resolve/main/PT-2-C2-C.ome.tiff?rel=0&autoplay=1" title="PFC" height="800" width="100%"></iframe>
|
465 |
+
```
|
466 |
+
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
|