import streamlit as st from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 't5-base' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) # model = T5ForTranslation.from_pretrained("Helsinki-NLP/opus-mt-en-ro") # tokenizer = T5Tokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ro") # Create the app layout st.title("Text Translation App") input_text = st.text_input("Enter text to translate ENDE:") submit_button = st.button("Translate") translated_text = st.text("") # Handle the submit button click if submit_button: # Encode the input text # encoded = tokenizer(text_input, return_tensors="pt") input_ids = tokenizer.encode(f'Translate English to German: {input_text}', return_tensors='pt') # Perform translation output_ids = model.generate(input_ids) translated = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Decode the translated text translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Display the translated text st.write("Translated Text:", translated_text[0])