import streamlit as st from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, logging import torch import os import httpx logging.set_verbosity_error() # Create the app layout st.header("Text Machine Translation") input_text = st.text_input("Enter text to translate:") # Create a list of options for the select box options = ["German", "Romanian", "English", "French", "Spanish", "Italian"] langs = {"English":"en", "Romanian":"ro", "German":"de", "French":"fr", "Spanish":"es", "Italian":"it"} models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-Mistral-7B-v0.2", 'Google', 'Argos'] # Create two columns scol, tcol = st.columns(2) # Place select boxes in columns with scol: sselected_language = st.selectbox("Source language:", options, index=0, placeholder="Select source language") with tcol: tselected_language = st.selectbox("Target language:", options, index=1, placeholder="Select target language") model_name = st.selectbox("Select a model:", models, index=0, placeholder="Select language model") sl = langs[sselected_language] tl = langs[tselected_language] st.session_state["sselected_language"] = sselected_language st.session_state["tselected_language"] = tselected_language st.session_state["model_name"] = model_name if model_name == 'Helsinki-NLP': try: model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) except EnvironmentError: model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) if model_name.startswith('t5'): tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) st.write("Selected language combination:", sselected_language, " - ", tselected_language, "Selected model:", model_name) submit_button = st.button("Translate") translated_textarea = st.text("") # Handle the submit button click if submit_button: if model_name.startswith('Helsinki-NLP'): prompt = input_text print(prompt) input_ids = tokenizer.encode(prompt, return_tensors='pt') # Perform translation output_ids = model.generate(input_ids) # Decode the translated text translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) elif model_name.startswith('Google'): url = os.environ['GCLIENT'] + f'sl={sl}&tl={tl}&q={input_text}' response = httpx.get(url) translated_text = response.json()[0][0][0] print(response.json()[0][0]) elif model_name.startswith('t5'): prompt = f'translate {sselected_language} to {tselected_language}: {input_text}' print(prompt) input_ids = tokenizer.encode(prompt, return_tensors='pt') # Perform translation output_ids = model.generate(input_ids) # Decode the translated text translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) if 'Unbabel' in model_name: pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [{"role": "user", "content": f"Translate the following text from {sselected_language} into {tselected_language}.\n{sselected_language}: {input_text}.\n{tselected_language}:"}] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) outputs = pipe(prompt, max_new_tokens=256, do_sample=False) translated_text = outputs[0]["generated_text"] start_marker = "" if start_marker in translated_text: translated_text = translated_text.split(start_marker)[1].strip() translated_text = translated_text.replace('Answer:', '').strip() if translated_text.startswith('Answer:') else translated_text if 'Argos' in model_name: import argostranslate.package import argostranslate.translate from_code = sl to_code = tl # Download and install Argos Translate package argostranslate.package.update_package_index() available_packages = argostranslate.package.get_available_packages() package_to_install = next( filter( lambda x: x.from_code == from_code and x.to_code == to_code, available_packages ) ) argostranslate.package.install_from_path(package_to_install.download()) # Translate translated_text = argostranslate.translate.translate(input_text, from_code, to_code) print(translated_text) # Display the translated text print(translated_text) st.write(f"Translated text from {sselected_language} to {tselected_language} using {model_name}:") translated_textarea = st.text(translated_text)