|
import streamlit as st |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
model_name = 't5-base' |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
|
|
|
st.title("Text Translation App") |
|
text_input = st.text_input("Enter text to translate:") |
|
submit_button = st.button("Translate") |
|
translated_text = st.text("") |
|
|
|
|
|
if submit_button: |
|
|
|
|
|
input_ids = tokenizer.encode(input_text, return_tensors='pt') |
|
|
|
|
|
output_ids = model.generate(input_ids) |
|
translated = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
st.write("Translated Text:", translated_text[0]) |