Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,10 +25,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
| 25 |
return f"Error finding model: {model_name_full}! Try other available language combination.", error
|
| 26 |
elif model_name.startswith('facebook/nllb'):
|
| 27 |
from languagecodes import nllb_language_codes
|
| 28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 30 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
| 31 |
-
translated_text = translator(input_text, max_length=
|
| 32 |
return translated_text[0]['translation_text'], message_text
|
| 33 |
else:
|
| 34 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
@@ -40,7 +40,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
| 40 |
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
|
| 41 |
|
| 42 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 43 |
-
output_ids = model.generate(input_ids, max_length=
|
| 44 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 45 |
|
| 46 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|
|
|
|
| 25 |
return f"Error finding model: {model_name_full}! Try other available language combination.", error
|
| 26 |
elif model_name.startswith('facebook/nllb'):
|
| 27 |
from languagecodes import nllb_language_codes
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=True, src_lang=nllb_language_codes[sselected_language])
|
| 29 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=True)
|
| 30 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
|
| 31 |
+
translated_text = translator(input_text, max_length=360)
|
| 32 |
return translated_text[0]['translation_text'], message_text
|
| 33 |
else:
|
| 34 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
|
| 40 |
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
|
| 41 |
|
| 42 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 43 |
+
output_ids = model.generate(input_ids, max_length=360)
|
| 44 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 45 |
|
| 46 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|