TiberiuCristianLeon commited on
Commit
a2857f6
·
verified ·
1 Parent(s): 83ef6ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -25,10 +25,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
25
  return f"Error finding model: {model_name_full}! Try other available language combination.", error
26
  elif model_name.startswith('facebook/nllb'):
27
  from languagecodes import nllb_language_codes
28
- tokenizer = AutoTokenizer.from_pretrained(model_name)
29
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
30
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
31
- translated_text = translator(input_text, max_length=512)
32
  return translated_text[0]['translation_text'], message_text
33
  else:
34
  tokenizer = T5Tokenizer.from_pretrained(model_name)
@@ -40,7 +40,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
40
  prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
41
 
42
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
43
- output_ids = model.generate(input_ids, max_length=512)
44
  translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
45
 
46
  print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
 
25
  return f"Error finding model: {model_name_full}! Try other available language combination.", error
26
  elif model_name.startswith('facebook/nllb'):
27
  from languagecodes import nllb_language_codes
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=True, src_lang=nllb_language_codes[sselected_language])
29
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=True)
30
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
31
+ translated_text = translator(input_text, max_length=360)
32
  return translated_text[0]['translation_text'], message_text
33
  else:
34
  tokenizer = T5Tokenizer.from_pretrained(model_name)
 
40
  prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
41
 
42
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
43
+ output_ids = model.generate(input_ids, max_length=360)
44
  translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
45
 
46
  print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')