Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,16 +28,22 @@ def model_to_cuda(model):
|
|
28 |
print("CUDA not available! Using CPU.")
|
29 |
return model
|
30 |
|
31 |
-
def eurollm(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
prompt = f"{sl}: {input_text}. {tl}:"
|
36 |
inputs = tokenizer(prompt, return_tensors="pt")
|
37 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
38 |
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
-
|
40 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
@spaces.GPU
|
43 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
@@ -61,12 +67,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
61 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
62 |
return translated_text, message_text
|
63 |
|
64 |
-
if 'nllb' in model_name:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
translated_text = translator(input_text, max_length=512)
|
69 |
-
return translated_text[0]['translation_text'], message_text
|
70 |
|
71 |
if model_name.startswith('facebook/mbart-large'):
|
72 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
@@ -113,7 +117,7 @@ def swap_languages(src_lang, tgt_lang):
|
|
113 |
|
114 |
def create_interface():
|
115 |
with gr.Blocks() as interface:
|
116 |
-
gr.Markdown("
|
117 |
|
118 |
with gr.Row():
|
119 |
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
|
|
|
28 |
print("CUDA not available! Using CPU.")
|
29 |
return model
|
30 |
|
31 |
+
def eurollm(model_name, sl, tl, input_text):
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
34 |
+
prompt = f"{sl}: {input_text} {tl}:"
|
|
|
35 |
inputs = tokenizer(prompt, return_tensors="pt")
|
36 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
37 |
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
result = output.rsplit(f'{tl}:')[-1].strip())
|
39 |
+
return result
|
40 |
+
|
41 |
+
def nllb(model_name, sl, tl, input_text):
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
|
43 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
44 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
|
45 |
+
translated_text = translator(input_text, max_length=512)
|
46 |
+
return translated_text[0]['translation_text']
|
47 |
|
48 |
@spaces.GPU
|
49 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
|
|
67 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
68 |
return translated_text, message_text
|
69 |
|
70 |
+
if 'nllb' in model_name.lower():
|
71 |
+
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|
72 |
+
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
|
73 |
+
return translated_text, message_text
|
|
|
|
|
74 |
|
75 |
if model_name.startswith('facebook/mbart-large'):
|
76 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
|
|
117 |
|
118 |
def create_interface():
|
119 |
with gr.Blocks() as interface:
|
120 |
+
gr.Markdown("### Machine Text Translation - maximum 512 tokens")
|
121 |
|
122 |
with gr.Row():
|
123 |
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
|