Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-
|
|
10 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
11 |
sl = langs[sselected_language][0]
|
12 |
tl = langs[tselected_language][0]
|
|
|
13 |
if model_name == "Helsinki-NLP":
|
14 |
try:
|
15 |
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
@@ -21,13 +22,13 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
22 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
23 |
except EnvironmentError as error:
|
24 |
-
return f"Error finding
|
25 |
elif model_name.startswith('facebook/nllb'):
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
28 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
|
29 |
translated_text = translator(input_text, max_length=512)
|
30 |
-
return translated_text[0]['translation_text']
|
31 |
else:
|
32 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
33 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
|
@@ -40,7 +41,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
40 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
41 |
output_ids = model.generate(input_ids, max_length=512)
|
42 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
43 |
-
|
44 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|
45 |
return translated_text, message_text
|
46 |
|
|
|
10 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
11 |
sl = langs[sselected_language][0]
|
12 |
tl = langs[tselected_language][0]
|
13 |
+
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
|
14 |
if model_name == "Helsinki-NLP":
|
15 |
try:
|
16 |
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
|
23 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
24 |
except EnvironmentError as error:
|
25 |
+
return f"Error finding model: {model_name_full}! Try other available language combination.", error
|
26 |
elif model_name.startswith('facebook/nllb'):
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
29 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
|
30 |
translated_text = translator(input_text, max_length=512)
|
31 |
+
return translated_text[0]['translation_text'], message_text
|
32 |
else:
|
33 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
34 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
|
|
|
41 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
42 |
output_ids = model.generate(input_ids, max_length=512)
|
43 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
44 |
+
|
45 |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
|
46 |
return translated_text, message_text
|
47 |
|