TiberiuCristianLeon commited on
Commit
60b55c4
·
verified ·
1 Parent(s): b98b60d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -10,6 +10,7 @@ models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-
10
  def translate_text(input_text, sselected_language, tselected_language, model_name):
11
  sl = langs[sselected_language][0]
12
  tl = langs[tselected_language][0]
 
13
  if model_name == "Helsinki-NLP":
14
  try:
15
  model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
@@ -21,13 +22,13 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
21
  tokenizer = AutoTokenizer.from_pretrained(model_name_full)
22
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
23
  except EnvironmentError as error:
24
- return f"Error finding required model! Try other available language combination. Error: {error}"
25
  elif model_name.startswith('facebook/nllb'):
26
  tokenizer = AutoTokenizer.from_pretrained(model_name)
27
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
28
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
29
  translated_text = translator(input_text, max_length=512)
30
- return translated_text[0]['translation_text']
31
  else:
32
  tokenizer = T5Tokenizer.from_pretrained(model_name)
33
  model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
@@ -40,7 +41,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
40
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
41
  output_ids = model.generate(input_ids, max_length=512)
42
  translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
43
- message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
44
  print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
45
  return translated_text, message_text
46
 
 
10
  def translate_text(input_text, sselected_language, tselected_language, model_name):
11
  sl = langs[sselected_language][0]
12
  tl = langs[tselected_language][0]
13
+ message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
14
  if model_name == "Helsinki-NLP":
15
  try:
16
  model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
 
22
  tokenizer = AutoTokenizer.from_pretrained(model_name_full)
23
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
24
  except EnvironmentError as error:
25
+ return f"Error finding model: {model_name_full}! Try other available language combination.", error
26
  elif model_name.startswith('facebook/nllb'):
27
  tokenizer = AutoTokenizer.from_pretrained(model_name)
28
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
29
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
30
  translated_text = translator(input_text, max_length=512)
31
+ return translated_text[0]['translation_text'], message_text
32
  else:
33
  tokenizer = T5Tokenizer.from_pretrained(model_name)
34
  model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
 
41
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
42
  output_ids = model.generate(input_ids, max_length=512)
43
  translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
44
+
45
  print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
46
  return translated_text, message_text
47