TiberiuCristianLeon commited on
Commit
452443d
·
verified ·
1 Parent(s): e3f013c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -4,7 +4,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer,
4
 
5
  langs = {"English": ("en", "eng_Latn"), "Romanian": ("ro", "ron_Latn"), "German": ("de", "deu_Latn"), "French": ("fr", "fra_Latn"), "Spanish": ("es", "spa_Latn"), "Italian": ("it", "ita_Latn")}
6
  options = list(langs.keys())
7
- models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "nllb-200-distilled-1.3B", "nllb-200-distilled-600M"]
8
 
9
  @spaces.GPU
10
  def translate_text(input_text, sselected_language, tselected_language, model_name):
@@ -22,7 +22,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
22
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
23
  except EnvironmentError as error:
24
  return f"Error finding required model! Try other available language combination. Error: {error}"
25
- elif model_name.startswith('nllb'):
26
  tokenizer = AutoTokenizer.from_pretrained(model_name)
27
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
28
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
 
4
 
5
  langs = {"English": ("en", "eng_Latn"), "Romanian": ("ro", "ron_Latn"), "German": ("de", "deu_Latn"), "French": ("fr", "fra_Latn"), "Spanish": ("es", "spa_Latn"), "Italian": ("it", "ita_Latn")}
6
  options = list(langs.keys())
7
+ models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-distilled-600M"]
8
 
9
  @spaces.GPU
10
  def translate_text(input_text, sselected_language, tselected_language, model_name):
 
22
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
23
  except EnvironmentError as error:
24
  return f"Error finding required model! Try other available language combination. Error: {error}"
25
+ elif model_name.startswith('facebook/nllb'):
26
  tokenizer = AutoTokenizer.from_pretrained(model_name)
27
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
28
  translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])