Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer,
|
|
4 |
|
5 |
langs = {"English": ("en", "eng_Latn"), "Romanian": ("ro", "ron_Latn"), "German": ("de", "deu_Latn"), "French": ("fr", "fra_Latn"), "Spanish": ("es", "spa_Latn"), "Italian": ("it", "ita_Latn")}
|
6 |
options = list(langs.keys())
|
7 |
-
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "nllb-200-distilled-1.3B", "nllb-200-distilled-600M"]
|
8 |
|
9 |
@spaces.GPU
|
10 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
@@ -22,7 +22,7 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
22 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
23 |
except EnvironmentError as error:
|
24 |
return f"Error finding required model! Try other available language combination. Error: {error}"
|
25 |
-
elif model_name.startswith('nllb'):
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
28 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
|
|
|
4 |
|
5 |
langs = {"English": ("en", "eng_Latn"), "Romanian": ("ro", "ron_Latn"), "German": ("de", "deu_Latn"), "French": ("fr", "fra_Latn"), "Spanish": ("es", "spa_Latn"), "Italian": ("it", "ita_Latn")}
|
6 |
options = list(langs.keys())
|
7 |
+
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-distilled-600M"]
|
8 |
|
9 |
@spaces.GPU
|
10 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
|
|
22 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
|
23 |
except EnvironmentError as error:
|
24 |
return f"Error finding required model! Try other available language combination. Error: {error}"
|
25 |
+
elif model_name.startswith('facebook/nllb'):
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
28 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=langs[sselected_language][1], tgt_lang=langs[tselected_language][1])
|