Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import torch | |
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, pipeline | |
import languagecodes | |
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"} | |
all_langs = languagecodes.iso_languages | |
# Language options as list, add favourite languages first | |
options = list(favourite_langs.keys()) | |
options.extend(list(all_langs.keys())) | |
models = ["Helsinki-NLP", | |
"t5-base", "t5-small", "t5-large", | |
"facebook/nllb-200-distilled-600M", | |
"facebook/nllb-200-distilled-1.3B", | |
"facebook/mbart-large-50-many-to-many-mmt", | |
"utter-project/EuroLLM-1.7B", | |
"Unbabel/TowerInstruct-7B-v0.2", | |
"Unbabel/TowerInstruct-Mistral-7B-v0.2" | |
] | |
def model_to_cuda(model): | |
# Move the model to GPU if available | |
if torch.cuda.is_available(): | |
model = model.to('cuda') | |
print("CUDA is available! Using GPU.") | |
else: | |
print("CUDA not available! Using CPU.") | |
return model | |
def eurollm(model_name, sl, tl, input_text): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
prompt = f"{sl}: {input_text} {tl}:" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=512) | |
output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
result = output.rsplit(f'{tl}:')[-1].strip() | |
return result | |
def nllb(model_name, sl, tl, input_text): | |
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto") | |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl) | |
translated_text = translator(input_text, max_length=512) | |
return translated_text[0]['translation_text'] | |
def translate_text(input_text, sselected_language, tselected_language, model_name): | |
sl = all_langs[sselected_language] | |
tl = all_langs[tselected_language] | |
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}' | |
print(message_text) | |
if model_name == "Helsinki-NLP": | |
try: | |
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name)) | |
except EnvironmentError: | |
try: | |
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name)) | |
except EnvironmentError as error: | |
return f"Error finding model: {model_name}! Try other available language combination.", error | |
if 'eurollm' in model_name.lower(): | |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text) | |
return translated_text, message_text | |
if 'nllb' in model_name.lower(): | |
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language] | |
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text) | |
return translated_text, message_text | |
if model_name.startswith('facebook/mbart-large'): | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
# translate source to target | |
tokenizer.src_lang = languagecodes.mbart_large_languages[sselected_language] | |
encoded = tokenizer(input_text, return_tensors="pt") | |
generated_tokens = model.generate( | |
**encoded, | |
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tselected_language]] | |
) | |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text | |
if 'Unbabel' in model_name: | |
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto") | |
messages = [{"role": "user", | |
"content": f"Translate the following text from {sselected_language} into {tselected_language}.\n{sselected_language}: {input_text}.\n{tselected_language}:"}] | |
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) | |
outputs = pipe(prompt, max_new_tokens=256, do_sample=False) | |
translated_text = outputs[0]["generated_text"] | |
return translated_text, message_text | |
if model_name.startswith('t5'): | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto") | |
if model_name.startswith("Helsinki-NLP"): | |
prompt = input_text | |
else: | |
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}" | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
output_ids = model.generate(input_ids, max_length=512) | |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}' | |
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n') | |
return translated_text, message_text | |
# Define a function to swap dropdown values | |
def swap_languages(src_lang, tgt_lang): | |
return tgt_lang, src_lang | |
def create_interface(): | |
with gr.Blocks() as interface: | |
gr.Markdown("### Machine Text Translation") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens") | |
with gr.Row(): | |
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True) | |
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True) | |
swap_button = gr.Button("Swap Languages") | |
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language]) | |
model_name = gr.Dropdown(choices=models, label="Select a model", value = models[4], interactive=True) | |
translate_button = gr.Button("Translate") | |
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True) | |
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False) | |
translate_button.click( | |
translate_text, | |
inputs=[input_text, sselected_language, tselected_language, model_name], | |
outputs=[translated_text, message_text] | |
) | |
return interface | |
interface = create_interface() | |
interface.launch() |