GradioTranslate / app.py
TiberiuCristianLeon's picture
Update app.py
e647eeb verified
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, pipeline
import languagecodes
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
all_langs = languagecodes.iso_languages
# Language options as list, add favourite languages first
options = list(favourite_langs.keys())
options.extend(list(all_langs.keys()))
models = ["Helsinki-NLP",
"t5-base", "t5-small", "t5-large",
"facebook/nllb-200-distilled-600M",
"facebook/nllb-200-distilled-1.3B",
"facebook/mbart-large-50-many-to-many-mmt",
"utter-project/EuroLLM-1.7B",
"Unbabel/TowerInstruct-7B-v0.2",
"Unbabel/TowerInstruct-Mistral-7B-v0.2"
]
def model_to_cuda(model):
# Move the model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
print("CUDA is available! Using GPU.")
else:
print("CUDA not available! Using CPU.")
return model
def eurollm(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = f"{sl}: {input_text} {tl}:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = output.rsplit(f'{tl}:')[-1].strip()
return result
def nllb(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
translated_text = translator(input_text, max_length=512)
return translated_text[0]['translation_text']
@spaces.GPU
def translate_text(input_text, sselected_language, tselected_language, model_name):
sl = all_langs[sselected_language]
tl = all_langs[tselected_language]
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
print(message_text)
if model_name == "Helsinki-NLP":
try:
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
except EnvironmentError:
try:
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
except EnvironmentError as error:
return f"Error finding model: {model_name}! Try other available language combination.", error
if 'eurollm' in model_name.lower():
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
return translated_text, message_text
if 'nllb' in model_name.lower():
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
return translated_text, message_text
if model_name.startswith('facebook/mbart-large'):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate source to target
tokenizer.src_lang = languagecodes.mbart_large_languages[sselected_language]
encoded = tokenizer(input_text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tselected_language]]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text
if 'Unbabel' in model_name:
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user",
"content": f"Translate the following text from {sselected_language} into {tselected_language}.\n{sselected_language}: {input_text}.\n{tselected_language}:"}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
translated_text = outputs[0]["generated_text"]
return translated_text, message_text
if model_name.startswith('t5'):
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
if model_name.startswith("Helsinki-NLP"):
prompt = input_text
else:
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
return translated_text, message_text
# Define a function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
return tgt_lang, src_lang
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("### Machine Text Translation")
with gr.Row():
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens")
with gr.Row():
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
swap_button = gr.Button("Swap Languages")
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language])
model_name = gr.Dropdown(choices=models, label="Select a model", value = models[4], interactive=True)
translate_button = gr.Button("Translate")
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True)
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False)
translate_button.click(
translate_text,
inputs=[input_text, sselected_language, tselected_language, model_name],
outputs=[translated_text, message_text]
)
return interface
interface = create_interface()
interface.launch()