|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
|
|
langs = {"German": "de", "Romanian": "ro", "English": "en", "French": "fr", "Spanish": "es", "Italian": "it"} |
|
options = list(langs.keys()) |
|
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/mbart-large-50-many-to-many-mmt"] |
|
|
|
def model_to_cuda(model): |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to('cuda') |
|
print("CUDA is available! Using GPU.") |
|
else: |
|
print("CUDA not available! Using CPU.") |
|
return model |
|
@spaces.GPU |
|
def translate_text(input_text, sselected_language, tselected_language, model_name): |
|
sl = langs[sselected_language] |
|
tl = langs[tselected_language] |
|
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}' |
|
if model_name == "Helsinki-NLP": |
|
try: |
|
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_full) |
|
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name_full)) |
|
except EnvironmentError: |
|
try : |
|
model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_full) |
|
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name_full)) |
|
except EnvironmentError as error: |
|
return f"Error finding model: {model_name_full}! Try other available language combination.", error |
|
|
|
if model_name.startswith('facebook/nllb'): |
|
from languagecodes import nllb_language_codes |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language]) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto") |
|
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language]) |
|
translated_text = translator(input_text, max_length=512) |
|
return translated_text[0]['translation_text'], message_text |
|
|
|
if model_name.startswith('facebook/mbart-large'): |
|
from languagecodes import mbart_large_languages |
|
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast |
|
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") |
|
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") |
|
|
|
tokenizer.src_lang = mbart_large_languages[sselected_language] |
|
encoded = tokenizer(input_text, return_tensors="pt") |
|
generated_tokens = model.generate( |
|
**encoded, |
|
forced_bos_token_id=tokenizer.lang_code_to_id[mbart_large_languages[tselected_language]] |
|
) |
|
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text |
|
|
|
if model_name.startswith('t5'): |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto") |
|
|
|
if model_name.startswith("Helsinki-NLP"): |
|
prompt = input_text |
|
else: |
|
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}" |
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output_ids = model.generate(input_ids, max_length=512) |
|
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n') |
|
return translated_text, message_text |
|
|
|
|
|
def swap_languages(src_lang, tgt_lang): |
|
return tgt_lang, src_lang |
|
|
|
def create_interface(): |
|
with gr.Blocks() as interface: |
|
gr.Markdown("## Machine Text Translation") |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...") |
|
|
|
with gr.Row(): |
|
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True) |
|
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True) |
|
swap_button = gr.Button("Swap Languages") |
|
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language]) |
|
|
|
model_name = gr.Dropdown(choices=models, label="Select a model", value = models[4], interactive=True) |
|
translate_button = gr.Button("Translate") |
|
|
|
translated_text = gr.Textbox(label="Translated text:", interactive=False) |
|
message_text = gr.Textbox(label="Messages:", placeholder="Display status and error messages", interactive=False) |
|
|
|
translate_button.click( |
|
translate_text, |
|
inputs=[input_text, sselected_language, tselected_language, model_name], |
|
outputs=[translated_text, message_text] |
|
) |
|
|
|
return interface |
|
|
|
|
|
interface = create_interface() |
|
interface.launch() |