GradioTranslate / app.py
TiberiuCristianLeon's picture
Update app.py
310e819 verified
raw
history blame
5.47 kB
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
langs = {"German": "de", "Romanian": "ro", "English": "en", "French": "fr", "Spanish": "es", "Italian": "it"}
options = list(langs.keys())
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large", "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/mbart-large-50-many-to-many-mmt"]
def model_to_cuda(model):
# Move the model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
print("CUDA is available! Using GPU.")
else:
print("CUDA not available! Using CPU.")
return model
@spaces.GPU
def translate_text(input_text, sselected_language, tselected_language, model_name):
sl = langs[sselected_language]
tl = langs[tselected_language]
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
if model_name == "Helsinki-NLP":
try:
model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name_full))
except EnvironmentError:
try :
model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name_full)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name_full))
except EnvironmentError as error:
return f"Error finding model: {model_name_full}! Try other available language combination.", error
if model_name.startswith('facebook/nllb'):
from languagecodes import nllb_language_codes
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=nllb_language_codes[sselected_language])
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=nllb_language_codes[sselected_language], tgt_lang=nllb_language_codes[tselected_language])
translated_text = translator(input_text, max_length=512)
return translated_text[0]['translation_text'], message_text
if model_name.startswith('facebook/mbart-large'):
from languagecodes import mbart_large_languages
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate source to target
tokenizer.src_lang = mbart_large_languages[sselected_language]
encoded = tokenizer(input_text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[mbart_large_languages[tselected_language]]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text
if model_name.startswith('t5'):
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
if model_name.startswith("Helsinki-NLP"):
prompt = input_text
else:
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n')
return translated_text, message_text
# Define a function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
return tgt_lang, src_lang
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("## Machine Text Translation")
with gr.Row():
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
with gr.Row():
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
swap_button = gr.Button("Swap Languages")
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language])
model_name = gr.Dropdown(choices=models, label="Select a model", value = models[4], interactive=True)
translate_button = gr.Button("Translate")
translated_text = gr.Textbox(label="Translated text:", interactive=False)
message_text = gr.Textbox(label="Messages:", placeholder="Display status and error messages", interactive=False)
translate_button.click(
translate_text,
inputs=[input_text, sselected_language, tselected_language, model_name],
outputs=[translated_text, message_text]
)
return interface
# Launch the Gradio interface
interface = create_interface()
interface.launch()