|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, pipeline |
|
import languagecodes |
|
|
|
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"} |
|
all_langs = languagecodes.iso_languages |
|
|
|
|
|
options = list(favourite_langs.keys()) |
|
options.extend(list(all_langs.keys())) |
|
models = ["Helsinki-NLP", |
|
"t5-base", "t5-small", "t5-large", |
|
"facebook/nllb-200-distilled-600M", |
|
"facebook/nllb-200-distilled-1.3B", |
|
"facebook/mbart-large-50-many-to-many-mmt", |
|
"utter-project/EuroLLM-1.7B", |
|
"Unbabel/TowerInstruct-7B-v0.2", |
|
"Unbabel/TowerInstruct-Mistral-7B-v0.2" |
|
] |
|
|
|
def model_to_cuda(model): |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to('cuda') |
|
print("CUDA is available! Using GPU.") |
|
else: |
|
print("CUDA not available! Using CPU.") |
|
return model |
|
|
|
def eurollm(model_name, sl, tl, input_text): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
prompt = f"{sl}: {input_text} {tl}:" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=512) |
|
output = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
result = output.rsplit(f'{tl}:')[-1].strip() |
|
return result |
|
|
|
def nllb(model_name, sl, tl, input_text): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto") |
|
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl) |
|
translated_text = translator(input_text, max_length=512) |
|
return translated_text[0]['translation_text'] |
|
|
|
@spaces.GPU |
|
def translate_text(input_text, sselected_language, tselected_language, model_name): |
|
sl = all_langs[sselected_language] |
|
tl = all_langs[tselected_language] |
|
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}' |
|
print(message_text) |
|
if model_name == "Helsinki-NLP": |
|
try: |
|
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name)) |
|
except EnvironmentError: |
|
try: |
|
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name)) |
|
except EnvironmentError as error: |
|
return f"Error finding model: {model_name}! Try other available language combination.", error |
|
if 'eurollm' in model_name.lower(): |
|
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text) |
|
return translated_text, message_text |
|
|
|
if 'nllb' in model_name.lower(): |
|
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language] |
|
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text) |
|
return translated_text, message_text |
|
|
|
if model_name.startswith('facebook/mbart-large'): |
|
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast |
|
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") |
|
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") |
|
|
|
tokenizer.src_lang = languagecodes.mbart_large_languages[sselected_language] |
|
encoded = tokenizer(input_text, return_tensors="pt") |
|
generated_tokens = model.generate( |
|
**encoded, |
|
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tselected_language]] |
|
) |
|
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text |
|
|
|
if 'Unbabel' in model_name: |
|
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
messages = [{"role": "user", |
|
"content": f"Translate the following text from {sselected_language} into {tselected_language}.\n{sselected_language}: {input_text}.\n{tselected_language}:"}] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=False) |
|
translated_text = outputs[0]["generated_text"] |
|
return translated_text, message_text |
|
|
|
if model_name.startswith('t5'): |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto") |
|
|
|
if model_name.startswith("Helsinki-NLP"): |
|
prompt = input_text |
|
else: |
|
prompt = f"translate {sselected_language} to {tselected_language}: {input_text}" |
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output_ids = model.generate(input_ids, max_length=512) |
|
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}' |
|
print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} = {translated_text}', sep='\n') |
|
return translated_text, message_text |
|
|
|
|
|
def swap_languages(src_lang, tgt_lang): |
|
return tgt_lang, src_lang |
|
|
|
def create_interface(): |
|
with gr.Blocks() as interface: |
|
gr.Markdown("### Machine Text Translation") |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens") |
|
|
|
with gr.Row(): |
|
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True) |
|
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True) |
|
swap_button = gr.Button("Swap Languages") |
|
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language]) |
|
|
|
model_name = gr.Dropdown(choices=models, label="Select a model", value = models[4], interactive=True) |
|
translate_button = gr.Button("Translate") |
|
|
|
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True) |
|
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False) |
|
|
|
translate_button.click( |
|
translate_text, |
|
inputs=[input_text, sselected_language, tselected_language, model_name], |
|
outputs=[translated_text, message_text] |
|
) |
|
|
|
return interface |
|
|
|
interface = create_interface() |
|
interface.launch() |