File size: 3,116 Bytes
56f497c
70ebea3
56f497c
 
e13fba3
 
 
 
 
 
70ebea3
56f497c
 
 
 
 
 
 
e402119
 
 
 
e13fba3
 
 
56f497c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169b22
 
 
 
56f497c
 
e402119
56f497c
 
 
2169b22
56f497c
5a309fc
 
2169b22
28c6232
56f497c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import spaces
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM

langs = {"English": "en", "Romanian": "ro", "German": "de", "French": "fr", "Spanish": "es", "Italian": "it"}
sl = langs[sselected_language]
tl = langs[tselected_language]
options = ["German", "Romanian", "English", "French", "Spanish", "Italian"]
models = ["Helsinki-NLP", "t5-base", "t5-small", "t5-large"]

@spaces.GPU
def translate_text(input_text, sselected_language, tselected_language, model_name):
    if model_name == "Helsinki-NLP":
        try:
            model_name_full = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
            tokenizer = AutoTokenizer.from_pretrained(model_name_full)
            model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
        except EnvironmentError:
            try :   
                model_name_full = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
                tokenizer = AutoTokenizer.from_pretrained(model_name_full)
                model = AutoModelForSeq2SeqLM.from_pretrained(model_name_full)
            except EnvironmentError as error:
                return f"Error finding required model! Try other available language combination. Error: {error}"
                
    else:
        tokenizer = T5Tokenizer.from_pretrained(model_name)
        model = T5ForConditionalGeneration.from_pretrained(model_name)

    if model_name.startswith("Helsinki-NLP"):
        prompt = input_text
    else:
        prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"

    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output_ids = model.generate(input_ids)
    translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

    return translated_text

# Define a function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
    return tgt_lang, src_lang 

def create_interface():
    with gr.Blocks() as interface:
        gr.Markdown("## Machine Text Translation")

        with gr.Row():
            input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
        
        with gr.Row():
            sselected_language = gr.Dropdown(choices=options, value="German", label="Source language")
            tselected_language = gr.Dropdown(choices=options, value="Romanian", label="Target language")
            swap_button = gr.Button("Swap Languages")
            swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language])

        model_name = gr.Dropdown(choices=models, value="Helsinki-NLP", label="Select a model")
        translate_button = gr.Button("Translate")

        translated_text = gr.Textbox(label="Translated text:", interactive=False)

        translate_button.click(
            translate_text, 
            inputs=[input_text, sselected_language, tselected_language, model_name], 
            outputs=translated_text
        )

    return interface

# Launch the Gradio interface
interface = create_interface()
interface.launch()